Advertisement

Combustion, Explosion, and Shock Waves

, Volume 51, Issue 3, pp 285–292 | Cite as

Experimental and numerical study of the structure of a premixed methyl decanoate/oxygen/argon glame

  • I. E. GerasimovEmail author
  • D. A. Knyazkov
  • A. M. Dmitriev
  • L. V. Kuibida
  • A. G. Shmakov
  • O. P. Korobeinichev
Article
  • 78 Downloads

Abstract

The structure of a premixed methyl decanoate/oxygen/argon flame stabilized on a flatflame burner at atmospheric pressure was studied by molecular beam mass spectrometry. The results of the experiment are compared with the results of numerical simulations using two different mechanisms of chemical reactions proposed in the literature. The main intermediate combustion products of methyl decanoate were identified by gas chromatography-mass spectrometry. Analysis of the primary stages of decomposition of methyl decanoate shows that reactions involving free radicals play a decisive role in its oxidation, which agrees well with the results of the experiments.

Keywords

methyl decanoate flame structure molecular beam mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Bozbas, “Biodiesel as an Alternative Motor Fuel: Production and Policies in the European Union,” Renewable Sustainable Energ. Rev. 12 (2), 542–552 (2008).CrossRefGoogle Scholar
  2. 2.
    A. K. Agarwal, “Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines,” Prog. Energ. Combust. Sci. 33 (3), 233–271 (2007).CrossRefGoogle Scholar
  3. 3.
    J. Van Gerpen, B. Shanks, R. Pruszko, D. Clements, and G. Knothe, “Biodiesel Production Technology,” Subcontractor Report No. NREL/SR-510-36244 (National Renewable Energy Laboratory, 2004).Google Scholar
  4. 4.
    M. Lapuerta, O. Armas, and J. Rodríguez-Fernández, “Effect of Biodiesel Fuels on Diesel Engine Emissions,” Prog. Energy Combust. Sci. 34 (2), 198–223 (2008).CrossRefGoogle Scholar
  5. 5.
    P. Dagaut, S. Gaïl, and M. Sahasrabudhe, “Rapeseed Oil Methyl Ester Oxidation over Extended Ranges of Pressure, Temperature, and Equivalence Ratio: Experimental and Modeling Kinetic Study,” Proc. Combust. Inst. 31, 2955–2961 (2007).CrossRefGoogle Scholar
  6. 6.
    M. H. Hakka, P.-A. Glaude, O. Herbinet, and F. Battin-Leclerc, “Experimental Study of the Oxidation of Large Surrogates for Diesel and Biodiesel Fuels,” Combust. Flame 156 (11), 2129–2144 (2009).CrossRefGoogle Scholar
  7. 7.
    V. Raghavan, S. Rajesh, S. Parag, and V. Avinash, “Investigation of Combustion Characteristics of Biodiesel and Its Blends,” Combust. Sci. Technol. 181 (6), 877–891 (2009).CrossRefGoogle Scholar
  8. 8.
    S. Bax, M. H. Hakka, P.-A. Glaude, O. Herbinet, and F. Battin-Leclerc, “Experimental Study of the Oxidation of Methyl Oleate in a Jet-Stirred Reactor,” Combust. Flame 157 (6), 1220–1229 (2010).CrossRefGoogle Scholar
  9. 9.
    A. J. Marchese, T. L. Vaughn, K. Kroenlein, and F. L. Dryer, “Ignition Delay of Fatty Acid Methyl Ester Fuel Droplets: Microgravity Experiments and Detailed Numerical Modeling,” Proc. Combust. Inst. 33, 2021–2030 (2011).CrossRefGoogle Scholar
  10. 10.
    C. K. Westbrook, C. V. Naik, O. Herbinet, W. J. Pitz, M. Mehl, S. M. Sarathy, and H. J. Curran, “Detailed Chemical Kinetic Reaction Mechanisms for Soy and Rapeseed Biodiesel Fuels,” Combust. Flame 158 (4), 742–755 (2011).CrossRefGoogle Scholar
  11. 11.
    C. V. Naik, C. K. Westbrook, O. Herbinet, W. J. Pitz, and M. Mehl, “Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate,” Proc. Combust. Inst. 33, 383–389 (2011).CrossRefGoogle Scholar
  12. 12.
    O. Herbinet, J. Biet, M. H. Hakka, V. Warth, P.-A. Glaude, A. Nicolle, and F. Battin-Leclerc, “Modeling Study of the Low-Temperature Oxidation of Large Methyl Esters from C11 to C19,” Proc. Combust. Inst. 33, 391–398 (2011).CrossRefGoogle Scholar
  13. 13.
    J. Y. W. Lai, K. C. Lin, and A. Violi, “Biodiesel Combustion: Advances in Chemical Kinetic Modeling,” Prog. Energy Combust. Sci. 37 (1), 1–14 (2011).CrossRefGoogle Scholar
  14. 14.
    L. Coniglio, H. Bennadji, P.-A. Glaude, O. Herbinet, and F. Billaud, “Combustion Chemical Kinetics of Biodiesel and Related Species (Methyl and Ethyl Esters): Experiments and Modeling Advances and Future Refinements,” Prog. Energy Combust. Sci. 39 (4), 340–382 (2013).CrossRefGoogle Scholar
  15. 15.
    P.-A. Glaude, O. Herbinet, S. Bax, J. Biet, V. Warth, and F. Battin-Leclerc, “Modeling of the Oxidation of Methyl Esters Validation for Methyl Hexanoate, Methyl Heptanoate, and Methyl Decanoate in a Jet-Stirred Reactor,” Combust. Flame 157 (11), 2035–2050 (2010).CrossRefGoogle Scholar
  16. 16.
    O. Herbinet, P.-A. Glaude, V. Warth, and F. Battin-Leclerc, “Experimental and Modeling Study of the Thermal Decomposition of Methyl Decanoate,” Combust. Flame 158 (7), 1288–1300 (2011).CrossRefGoogle Scholar
  17. 17.
    S. P. Pyl, K. M. Van Geem, P. Puimége, M. K. Sabbe, M.-F. Reyniers, and G. B. Marin, “A Comprehensive Study of Methyl Decanoate Pyrolysis,” Energy 43 (1), 146–160 (2012).CrossRefGoogle Scholar
  18. 18.
    W. Wang and M. A. Oehlschlaeger, “A Shock Tube Study of Methyl Decanoate Autoignition at Elevated Pressures,” Combust. Flame 159 (2), 476–481 (2012).CrossRefGoogle Scholar
  19. 19.
    D. R. Haylett, D. F. Davidson, and R. K. Hanson, “Ignition Delay Times of Low-Vapor-Pressure Fuels Measured using an Aerosol Shock Tube,” Combust. Flame 159 (2), 552–561 (2012).CrossRefGoogle Scholar
  20. 20.
    K. Seshadri, T. Lu, O. Herbinet, S. Humer, U. Niemann, W. J. Pitz, R. Seiser, and C. K. Law, “Experimental and Kinetic Modeling Study of Extinction and Ignition of Methyl Decanoate in Laminar Non-Premixed Flows,” Proc. Combust. Inst. 32, 1067–1074 (2009).CrossRefGoogle Scholar
  21. 21.
    S. M. Sarathy, M. J. Thomson, W. J. Pitz, and T. Lu, “An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion,” Proc. Combust. Inst. 33, 399–405 (2011).CrossRefGoogle Scholar
  22. 22.
    Y. L. Wang, Q. Feng, F. N. Egolfopoulos, and T. T. Tsotsis, “Studies of C4 and C10 Methyl Ester Flames,” Combust. Flame 158 (8), 1507–1519 (2011).CrossRefGoogle Scholar
  23. 23.
    P. Diévart, S. H. Won, J. Gong, S. Dooley, and Y. Ju, “A Comparative Study of the Chemical Kinetic Characteristics of Small Methyl Esters in Diffusion Flame Extinction,” Proc. Combust. Inst 34, 821–829 (2013).CrossRefGoogle Scholar
  24. 24.
    O.Herbinet, W. J. Pitz, and C. K. Westbrook, “Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate,” Combust. Flame 154 (3), 507–528 (2008).CrossRefGoogle Scholar
  25. 25.
    P. Diévart, S. H. Won, S. Dooley, F. L. Dryer, and Y. Ju, “A Kinetic Model for Methyl Decanoate Combustion,” Combust. Flame 159 (5), 1793–1805 (2012).CrossRefGoogle Scholar
  26. 26.
    R. Grana, A. Frassoldati, C. Saggese, T. Faravelli, and E. Ranzi, “A Wide Range Kinetic Modeling Study of Pyrolysis and Oxidation of Methyl Butanoate and Methyl Decanoate Note II: Lumped Kinetic Model of Decomposition and Combustion of Methyl Esters up to Methyl Decanoate,” Combust. Flame 159 (7), 2280–2294 (2012).CrossRefGoogle Scholar
  27. 27.
    O. P. Korobeinichev, S. B. Ilyin, V. V. Mokrushin, and A. G. Shmakov, “Destruction Chemistry of Dimethyl Methylphosphonate in H2/O2/Ar Flame Studied by Molecular Beam Mass Spectrometry,” Combust. Sci. Technol. 116–117 (1–6), 51–67 (1996).Google Scholar
  28. 28.
    O. P. Korobeinichev, S. B. Ilyin, V. M. Shvartsberg, and A. A. Chernov, “The Destruction Chemistry of Organophosphorus Species in Flames I: Quantitative Determination of Final Phosphorus-Containing Species in Hydrogen-Oxygen Flames,” Combust. Flame 118 (4), 718–732 (1999).CrossRefGoogle Scholar
  29. 29.
    I. E. Gerasimov, D. A. Knyazkov, S. A. Yakimov, T. A. Bolshova, A. G. Shmakov, and O. P. Korobeinichev, “Structure of Atmospheric-Pressure Fuel-Rich Premixed Ethylene Flame with and without Ethanol,” Combust. Flame 159 (5), 1840–1850 (2012).CrossRefGoogle Scholar
  30. 30.
    W. E. Kaskan, “The Dependence of Flame Temperature on Mass Burning Velocity,” Proc. Combust. Inst. 6, 134–141 (1957).CrossRefGoogle Scholar
  31. 31.
    A. G. Shmakov, O. P. Korobeinichev, I. V. Rybitskaya, A. A. Chernov, D. A. Knyazkov, T. A. Bolshova, and A. A. Konnov, “Formation and Consumption of NO in H2 + O2 + N2 Flames Doped with NO or NH3 at Atmospheric Pressure,” Combust. Flame 157 (3), 556–565 (2010).CrossRefGoogle Scholar
  32. 32.
    N. Hansen, T. A. Cool, P. R. Westmoreland, and K. Kohse-Höinghaus, “Recent Contributions of Flame-Sampling Molecular-Beam Mass Spectrometry to a Fundamental Understanding of Combustion Chemistry,” Prog. Energy Combust. Sci. 35 (2), 168–191 (2009).CrossRefGoogle Scholar
  33. 33.
    H. Xu, C. Yao, G. Xu, Z. Wang, and H. Jin, “Experimental and Modeling Studies of the Effects of Methanol and Ethanol Addition on the Laminar Premixed Low-Pressure n-Heptane/Toluene Flames,” Combust. Flame 160 (8), 1333–1344 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. E. Gerasimov
    • 1
    Email author
  • D. A. Knyazkov
    • 1
    • 2
  • A. M. Dmitriev
    • 1
    • 2
  • L. V. Kuibida
    • 1
    • 2
  • A. G. Shmakov
    • 1
    • 2
  • O. P. Korobeinichev
    • 1
  1. 1.Voevodsky Institute of Chemical Kinetics and Combustion, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations