Skip to main content
Log in

Dependences of the detonation velocity and propellant performance of metallized explosives on the charge density and additive content

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The dependences of the detonation velocity and the propellant performance measured using the M-40 technique on the charge density for aluminized explosives with different mass fraction of Al were studied. The fractions of the energy of Al combustion utilized during the chemical reactions and during the acceleration of the flyer plate were estimated. Regression dependences of the detonation velocity and the propellant performance on the charge density were obtained. The effect of the addition of particulate Al, Ti, Zr, and W in an amount of 5–30% on the detonation velocity of high-density explosive charges based on plasticized RDX was investigated. It is found that the reduction in the detonation velocity with the addition of various metallic additives is determined by the longitudinal sound velocity of the additive, and not by its density. Simple formulas for calculating the detonation parameters of high-density metallized explosives were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Cook, The Science of High Explosives (Reinhold, New York, 1958).

    Google Scholar 

  2. A. N. Dremin, P. F. Pokhil, and M. I. Arifov, “Effect of Aluminum on the Detonation Parameters of TNT,” Dokl. Akad. Nauk SSSR 131(5), 1140–1142 (960).

  3. A. F. Belyaev, Combustion, Detonation, and the Work of Explosion of Condensed Systems (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  4. M. Finger, H. C. Hornig, E. L. Lee, et al., “Metal Acceleration by Composite Explosives,” in Proc. of the 5th Symp. (Int.) on Detonation (Pasadena, California, 1970), pp. 55–63.

    Google Scholar 

  5. G. S. Sosnova, “On Combustion of Boron and Aluminum to Their Higher Oxides at High Pressures and Temperatures,” in Combustion and Explosion, Proc. III All-Union. Symposium on Combustion and Explosion (Nauka, Moscow, 1972), pp. 455–458.

    Google Scholar 

  6. L. V. Al’tshuler, V. T. Ryazanov, and M. P. Speranskaya, “Effect of Impurities on the Detonation Regimes of Condensed Explosives,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 182 (1972).

    Google Scholar 

  7. G. W. Bjarnholt, “Effects of Aluminium and Lithium Flouride Admixures on Metal Propellant Performance of Comp B,” in Proc. of the 6th Symp. (Int.) on Detonation (San Diego, California, 1976), pp. 517–526.

    Google Scholar 

  8. A. I. Aniskin and K. K. Shvedov, “Effect of Aluminum and Magnesium on the Detonation Characteristics in Mixtures with RDX,” in Detonation. Critical Phenomena. Physicochemical Transformations in Shock Waves (Chernogolovka, 1978), pp. 26–30 [in Russian].

    Google Scholar 

  9. V. G. Khotin, A. I. Kozlov, and A. V. Akhachinskii, “On the Participation of Metals in Chemical Transformation in the Detonation Wave,” in Chemical Physics of Condensed Explosive Systems, Proc. Mendeleev Moscow Chemical Technological Institute (Moscow, 1979), No. CXI, pp. 113–122.

    Google Scholar 

  10. M. N. Silin, A. I. Aniskin, V. G. Khotin, and A. I. Kozlov, “On Features of the Oxidation Reactions of Aluminum behind the Detonation Wave Front,” in Conf. IV All-Union Conf. on Detonation (Joint Institute of Chemical Physics, Chernogolovka, 1988), Vol. 1, pp. 125–128.

    Google Scholar 

  11. V. Yu. Davydov, A. M. Grishkin, and I. I. Feodoritov, “Experimental-Theoretical Investiagtion of the Oxidation of Aluminum in the Detonation Wave,” Fiz. Goreniya Vzryva 28(5), 124–128 (1992) [Combust., Expl., Shock Waves 28 (5), 564–568 (1992)].

    Google Scholar 

  12. A. M. Grishkin, L. V. Dubnov, V. Yu. Davydov, Yu. A. Levshina, and T. N. Mikhailova, “Effect of Powdered Aluminum Additives on the Detonation Parameters of High Explosives,” Fiz. Goreniya Vzryva 29(2), 115–117 (1993) [Combust., Expl., Shock Waves 29 (2), 239–241 (1993)].

    Google Scholar 

  13. M. Sowperthwaite, “Nonideal Detonation in a Composite CHNO Explosive Containing Aluminium,” in Proc. of the 10th Symp. (Int.) On Detonation (Boston, 1993), pp. 656–664.

    Google Scholar 

  14. M. F. Gogulya, M. N. Makhov, A. Yu. Dolgoborodov, M. A. Brazhnikov, V. I. Arkhipov, and V. G. Shchetinin, “Mechanical Sensitivity and Detonation Parameters of Aluminized Explosives,” Fiz. Goreniya Vzryva 40(4), 82–95 (2004) [Combust., Expl., Shock Waves 40 (4), 445–457 (2004)].

    Google Scholar 

  15. M. F. Gogulya, M. N. Makhov, M. A. Brazhnikov, and A. Yu. Dolgoborodov, “Detonation Velocity of BTNEN/Al,” Fiz. Goreniya Vzryva 42(4), 125–130 (2006) [Combust., Expl., Shock Waves 42 (4), 480–485 (2006)].

    Google Scholar 

  16. M. F. Gogulya, M. A. Brazhnikov, “Detonation of Metallized Composite Explosives,” in Shock Wave Sci. and Technol. Ref. Library, Ed. by F. Zhang (Springer-Verlag, Berlin, 2009), Vol. 4, Part 4, pp. 217–287.

    Google Scholar 

  17. Yu. B. Khariton and S. B. Ratner, “Study of Heterogeneous Systems,” Zh. Fiz. Khim. 20(2), 221–222 (1946).

    Google Scholar 

  18. V. Yu. Davydov, L. V. Dubnov, I. I. Feodoritov, and V. G. Khotin, “On the Possibility of Calculating the Detonation Parameters of High-Density Metallized Explosives,” in Problems of the Theory of Condensed Explosive Systems, Proc. of Mendeleev Moscow Chemical Technological Institute (Moscow, 1980), No. SXII, pp. 130–134.

    Google Scholar 

  19. A. N. Afanasenkov, V. M. Bogomolov, and I. M. Voskoboinikov, “Calculation of the Detonation Wave Parameters of Mixtures of Explosives and Inert Additives,” Fiz. Goreniya Vzryva 6(2), 182–186 (1970) [Combust., Expl., Shock Waves 6 (2), 163–166 (1970)].

    Google Scholar 

  20. I. M. Voskoboinikov and A. A. Kotomin, “Calculation of Detonation Parameters for Explosive Mixtures with Inert Additives,” Fiz. Goreniya Vzryva 21(5), 93–97 (1985) [Combust., Expl., Shock Waves 21 (5), 600–604 (1985)].

    Google Scholar 

  21. V. D. Lyutov, I. M. Voskoboinikov, et al., “On the Estimation of the Detonation Pressure of Explosives Containing an Inert Additive,” Vzryvnoe Delo, No. 63/20, 82 (1967).

    Google Scholar 

  22. L. N. Stesik, “Calculation of Detonation Parameters of Explosives Containing Metals Using the Ideal Gas Equation of State,” Fiz. Goreniya Vzryva 7(1), 111–117 (1971).

    Google Scholar 

  23. A. L. Krivchenko and D. A. Krivchenko, “On the Common Principles and Four Techniques for Calculating the Detonation Parameters,” in Shock Waves in Condensed Media, Proc of Conf. (St. Petersburg, 2008), pp. 22–28.

    Google Scholar 

  24. A. N. Dremin, S. D. Savrov, V. S. Trofimov, and K. K. Shvedov, Detonation Waves in Condensed Media (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  25. F. A. Baum, L. P. Orlenko, K. P. Stanyukovich, V. P. Chelyshev, and B. I. Shekhter, Physics of Explosion (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  26. B. G. Loboiko and S. N. Lyubyatinskii, “Reaction Zones of Detonating Solid Explosives,” Fiz. Goreniya Vzryva 36(6), 45–64 (2000) [Combust., Expl., Shock Waves 36 (6), 716–733 (2000)].

    Google Scholar 

  27. V. Yu. Davydov, A. M. Grishkin, and E. Yu. Muryshev, “Effect of Gas-Dynamic Conditions on the Energy Output of Secondary Reactions in Propellant Action of Explosives,” Fiz. Goreniya Vzryva 29(2), 109–115 (1993) [Combust., Expl., Shock Waves 29 (2), 233–238 (1993)].

    Google Scholar 

  28. A. L. Krivchenko, Investigation of the Detonation of Filled Explosive Systems, Candidate’s Dissertation in Tech. Sci. (Joint Inst. of Chem. Phys., Chernogolovka-Kuibyshev, 1975).

    Google Scholar 

  29. V. Yu. Davydov, A. S. Gubin, D. P. Simonov, and V. G. Shevchenko, “On the Detonation Velocity, Explosion Impulse, and Strength of Metallized Explosives,” in XI Zababakhin Scientific Readings, Snezhinsk, 2010; www.vniitf.ru/Images/zst/2010/Sec2/2-26.pdf.

  30. V. I. Pepekin, M. N. Makhov, and Yu. A. Lebedev, “Heats of Explosive Decomposition of Individual Explosives,” Dokl. Akad. Nauk SSSR 232(4), 852–855 (1977).

    Google Scholar 

  31. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Acadmic Press, New York, 1967).

    Google Scholar 

  32. V. Yu. Davydov and A. S. Gubin, “On the Propellant Performance of Explosives and Their Mixtures with Combustible Additives. 2. Activated and Ultrafine Aluminum Powders,” Khim. Fiz. 30(7), 62–67 (2011).

    Google Scholar 

  33. V. Y. Davydov, V. Y. Klimenko, “On Detonation Characteristics of Metallized Explosives,” in New Models and Hydrocodes for Shock Wave Processes in Condensed Matter (Paris, 2010), pp 59–60.

    Google Scholar 

  34. Energetic Condensed Systems: A Short Encyclopaedia, Ed. by B. P. Zhukov (Yanus-K, Moscow, 2000).

    Google Scholar 

  35. V. Yu. Davydov and A. S. Gubin, “On the Propellant Performance of Explosives and Their Mixtures with Combustible Additives. 3. Acceleration of Steel Shells and Plates,” Khim. Fiz. 30(8), 44–51 (2011).

    Google Scholar 

  36. V. Yu. Davydov and A. S. Gubin, “On the Propellant Performance of Explosives and Their Mixtures with Combustible Additives. 1. Propellant Performance Estimated Using the M-40 Technique,” Khim. Fiz. 30(6), 49–56 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Davydov.

Additional information

Original Russian Text © Yu.V. Davydov, A.S. Gubin.

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 5, pp. 123–133, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, Y.V., Gubin, A.S. Dependences of the detonation velocity and propellant performance of metallized explosives on the charge density and additive content. Combust Explos Shock Waves 50, 612–621 (2014). https://doi.org/10.1134/S0010508214050165

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214050165

Keywords

Navigation