Skip to main content
Log in

Equation of state of compounds of lithium isotopes with hydrogen isotopes

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A semi-empirical wide-range equation of state of compounds of lithium isotopes with hydrogen isotopes is proposed. This equation allows thermodynamic properties to be calculated both in the range of comparatively small densities, pressures, and energies available for experimental studies and in the range of superhigh densities, pressures, and energies where the states can only be estimated at the moment by calculations in accordance with theoretical models. The equation of state contains empirical functions, which allow the composition of the isotopes and the influence of the hydroxide admixture on the compound properties to be taken into account. The capabilities of the equation of state are demonstrated by an example of the description of experimental and numerical data characterizing thermodynamic and thermophysical properties of several compounds of lithium and hydrogen isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Marsh, “Hugoniot Equations of State of Li6H, Li6D, LinH, and LinD (U),” Report No. LA-4942 (Los Alamos Scientific Laboratory of the University of California, 1972); http://dx.doi.org/10.2172/4280032.

    Google Scholar 

  2. C. E. Ragan, “Shock Compression Measurements at 1 to 7 TPa,” Phys. Rev. A 25(6), 3360–3375 (1982).

    Article  ADS  Google Scholar 

  3. C. E. Ragan III, “Shock-Wave Experiments at Threefold Compression,” Phys. Rev. A 29(3), 1391–1402 (1984).

    Article  ADS  Google Scholar 

  4. J. L. Anderson, J. Nasise, K. Philipson, and F. E. Pretzel, “Isotopic Effects on the Thermal Expansion of Lithium Hydride,” J. Phys. Chem. Solids 31, 613–618 (1970).

    Article  ADS  Google Scholar 

  5. J. Hama, K. Suito, and N. Kawakami, “First-Principles Calculation of the Shock-Wave Equation of State of Isotopic Lithium Hydrides,” Phys. Rev. B 39(5), 3351–3360 (1989).

    Article  ADS  Google Scholar 

  6. P. Loubeyre, R. Le Toullec, M. Hanfland, et al., “Equation of State of 7LiH and 7LiD from X-ray Diffraction to 94 GPa,” Phys. Rev. B 57(17), 10403–10406 (1998).

    Article  ADS  Google Scholar 

  7. A. Lazicki, P. Loubeyre, F. Occelli, et al., “Static Compression of LiH to 250 GPa,” Phys. Rev. B 85, 054103(1–6) (2012).

    Article  ADS  Google Scholar 

  8. R. A. Jat, S. C. Parida, K. Krishnan, et al., “Heat Capacities of Polycrystalline nLiH and nLiD by Differential Scanning Calorimetric Method,” J. Alloys Compounds 505, 309–314 (2010).

    Article  Google Scholar 

  9. F. H. Welch, “Lithium Hydride Properties,” DC-61-3-73 (Aircraft Nuclear Propulsion Department, 1961).

    Book  Google Scholar 

  10. J. Zhang, Yu. Zhao, Yu. Wang, and L. Daemen, “Thermal Equations of State and Melting of Lithium Deuteride under High Pressure,” J. Appl. Phys. 103, 093513(1–4) (2008).

    Google Scholar 

  11. K. A. Yakimovich and A. G. Mozgovoi, Isotopic Modifications of Lithium Hydride and their Solutions with Lithium. Thermophysical and Physicochemical Properties (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  12. Thermodynamic Properties of Individual Substances, Ed. by V. P. Glushko (Nauka, Moscow, 1982), Vol. IV, Book 2 [in Russian].

    Google Scholar 

  13. S. Yu. Savrasov and D. Yu. Savrasov, “Full-Potential Linear-Muffin-Tin-Orbital Method for Calculating Total Energies and Forces,” Phys. Rev. B 46(19), 12181–12195 (1992).

    Article  ADS  Google Scholar 

  14. S. Y. Savrasov, D. Y. Savrasov, and O. K. Andersen, “Linear-Response Calculations of Electron-Phonon Interactions,” Phys. Rev. Lett. 72(3), 372–375 (1994).

    Article  ADS  Google Scholar 

  15. S. Y. Savrasov and D. Y. Savrasov, “Electron-Phonon Interactions and Related Physical Properties of Metals from Linear-Response Theory,” Phys. Rev. B 54, 16487–16501 (1996).

    Article  ADS  Google Scholar 

  16. P. E. Blöchl, O. Jepsen, and O. K. Andersen, “Improved Tetrahedron Method for Brillouin-Zone Integrations,” Phys. Rev. B 49, 16223–16234 (1994).

    Article  ADS  Google Scholar 

  17. S. H. Vosko, L. Wilk, and M. Nusair, “Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculation: A Critical Analysis,” Can. J. Phys. 58(8), 1200–1211 (1980).

    Article  ADS  Google Scholar 

  18. J. P. Perdew, K. Burke, and Y. Wang, “Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System,” Phys. Rev. B 54, 16533–16539 (1996).

    Article  ADS  Google Scholar 

  19. N. N. Kalitkin and L. V. Kuz’mina, “Tables of Thermodynamic Functions of Substances at High Energy Concentrations,” Preprint No. 35 (Inst. Applied Math., Russian Acad. of Sci., Moscow, 1975).

    Google Scholar 

  20. D. G. Gordeev, L. F. Gudarenko, A. A. Kayakin, and V. G. Kudel’kin, “Equation of State Model for Metals with Ionization Effectively Taken into Account. Equation of State of Tantalum, Tungsten, Aluminum, and Beryllium,” Fiz. Goreniya Vzryva 49(1), 106–120 (2013) [Combust., Expl., Shock Waves 49 (1), 92–104 (2013)].

    Google Scholar 

  21. Yu. S. Zav’yalov, B. I. Kvasov, and V. K. Miroshnichenko, Methods of Spline Functions (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  22. V. P. Kopyshev, “On Thermodynamics of Nuclei of a Monatomic Substance,” Preprint No. 59 (Inst. Applied Math., Russian Acad. of Sci., Moscow, 1978).

    Google Scholar 

  23. D. G. Gordeev, L. F. Gudarenko, M. V. Zhernokletov, et al., “Semi-Empirical Equation of State of Metals. Equation of State of Aluminu,” Fiz. Goreniya Vzryva 44(2), 61–75 (2008) [Combust., Expl., Shock Waves 44 (2), 177–189 (2008)].

    Google Scholar 

  24. Y. Wang, R. Ahuja, and B. Johansson, “Melting of Iron and Other Metals at Earth’s Core Conditions: A Simplified Computational Approach,” Phys. Rev. B 65, 014104(1–3) (2001).

    ADS  Google Scholar 

  25. J. P. Hansen, “Statistical Mechanics of Dense Ionized Matter. I. Equilibrium Properties of the Classical One-Component Plasma,” Phys. Rev. A 8(6), 3096–3109 (1973).

    Article  ADS  Google Scholar 

  26. E. L. Pollock and J. P. Hansen, “Statistical Mechanics of Dense Ionized Matter. II. Equilibrium Properties and Melting Transition of the Crystallized One-Component Plasma,” Phys. Rev. A 8(6), 3110–3122 (1973).

    Article  ADS  Google Scholar 

  27. T. Ogitsu, E. Schwegler, F. Gygi, and G. Galli, “Melting of Lithium Hydride under Pressure,” Phys. Rev. Lett. 91(17), 175502(1–4) (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Gudarenko.

Additional information

Original Russian Text © A.A. Kayakin, L.F. Gudarenko, D.G. Gordeev.

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 5, pp. 109–122, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayakin, A.A., Gudarenko, L.F. & Gordeev, D.G. Equation of state of compounds of lithium isotopes with hydrogen isotopes. Combust Explos Shock Waves 50, 599–611 (2014). https://doi.org/10.1134/S0010508214050153

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214050153

Keywords

Navigation