Skip to main content
Log in

Continuous detonation in a supersonic flow of a hydrogen-oxygen mixture

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope


The problem of continuous spin detonation in a supersonic flow in a flow-type annular combustor is considered in a two-dimensional unsteady formulation. The dynamics of the detonation wave in a hydrogen-oxygen mixture with isentropic and shock-wave compression of the flow in the input diffuser is studied. It is shown that the mass flow rate of the mixture through the combustor decreases as continuous spin detonation is formed, and a steady regime with a “detached” shock wave is observed at the entrance of the supersonic diffuser. For a contoured combustor, the limit from above is obtained for the Mach number of the incoming supersonic flow at which a continuous detonation regime is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Ya. B. Zel’dovich, “On the Issues of Energy Utilization of Detonation Combustion,” Zh. Tekh. Fiz. 10(17), 1453–1461 (1940).

    Google Scholar 

  2. G. D. Roy, S. M. Frolov, A. A. Borisov, and D. W. Netzer, “Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective,” Prog. Energy Combust. Sci. 30, 545–672 (2004).

    Article  Google Scholar 

  3. B. V. Voitsekhovskii, “Steady Detonation,” Dokl Akad. Nauk SSSR 129(6), 1254–1256 (1959).

    Google Scholar 

  4. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Spin Detonation of a Fuel-Air Mixture in a Cylindrical Combustor,” Dokl. Ross. Akad. Nauk 400(3), 338–340 (2005).

    Google Scholar 

  5. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous Spin Detonations,” J. Propulsion Power 22(6), 1204–1216 (2006).

    Article  Google Scholar 

  6. F. A. Bykovskii and S. A. Zhdan, Continuous Spin Detonation (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2013) [in Russian].

    Google Scholar 

  7. S. A. Zhdan, “Mathematical Model of Continuous Detonation in an Annular Combustor with a Supersonic Flow Velocity,” Fiz. Goreniya Vzryva 44(6), 83–91 (2008) [Combust., Expl., Shock Waves 44 (6), 690–697 (2008)].

    Google Scholar 

  8. S. A. Zhdan and A. I. Rybnikov, “Numerical Study of Continuous Spin Detonation with a Supersonic Flow Velocity,” in Proc. Int. 22nd ICDERS, Minsk, Belarus, July 27–31, 2009; CD ROM, No. 21; ISBN 978-985-6456-65-0.

  9. E. M. Braun, F. K. Lu, and D. R. Wilson, “Airbreathing Rotating Detonation Engine Cycle Analysis,” in 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit., Nashville, TN, July 5–28, 2010, AIAAPaper No. 2010-7039 (2010).

    Google Scholar 

  10. Yu. A. Nikolaev and D. V. Zak, “Agreement of Models of Chemical Reactions in Gases with the Second Law of Thermodynamics,” Fiz. Goreniya Vzryva 24(4), 87–90 (1988) [Combust., Expl., Shock Waves 24 (4), 461–463 (1988)].

    ADS  Google Scholar 

  11. S. A. Zhdan, F. A. Bykovskii, and E. F. Vedernikov, “Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen-Oxygen Mixture,” Fiz. Goreniya Vzryva 43(4), 90–101 (2007) [Combust., Expl., Shock Waves 43 (4), 449–459 (2007)].

    Google Scholar 

  12. G. M. Abramovich, Applied Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  13. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  14. S. K. Godunov, A. V. Zabrodin, et al., Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  15. V. P. Kolgan, “Application of the Principle of the Minimum Values of the Derivative to Constructing Finite-Difference Schemes for Calculating Discontinuous Solutions of Gas Dynamics,” Uch. Zap. TsAGI 3(6), 68–77 (1972).

    Google Scholar 

  16. L. V. Ovsyannikov, Lectures on Fundamentals of Gas Dynamics (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  17. B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Structure of the Detonation Front in Gases (Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1963) [in Russian].

    Google Scholar 

  18. V. K. Baev, V. I. Golovichev, P. K. Tretyakov, et al., Combustion in a Supersonic Flow (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  19. T. Fujiwara, M. Hishida, J. Kindracki, and P. Wolanski, “Stabilization of Detonation for any Incoming Mach Numbers,” Fiz. Goreniya Vzryva 45(5), 108–110 (2009) [Combust., Expl., Shock Waves 45 (5), 603–605 (2009)].

    Google Scholar 

  20. B. G. Trusov, “Modeling of Chemical and Phase Equilibrium at High Temperatures,” in Astra-4 Software System (Bauman Moscow State Technical University, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. A. Zhdan.

Additional information

Original Russian Text © S.A. Zhdan, A.I. Rybnikov.

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 5, pp. 63–74, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdan, S.A., Rybnikov, A.I. Continuous detonation in a supersonic flow of a hydrogen-oxygen mixture. Combust Explos Shock Waves 50, 556–567 (2014).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: