Skip to main content
Log in

Physicomathematical modeling of detonation suppression by inert particles in methane-oxygen and methane-hydrogen-oxygen mixtures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Based on the developed physicomathematical model of detonation attenuation and suppression in a methane-oxygen mixture by means of addition of a cloud of inert particles, the influence of the volume fraction of particles and their diameter on the detonation wave velocity is analyzed. Detonation limits in terms of the volume fraction of particles in methane-oxygen and methane-hydrogen-oxygen mixtures are found. A comparison with our previous data on suppression of detonation in a hydrogen-oxygen mixture shows that the critical volume fractions of particles resulting in detonation wave suppression in the methane-hydrogen-oxygen mixture are greater than those in the hydrogen-oxygen mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Westbrook and P. A. Urtiew, “Use of Chemical Kinetics to Predict Critical Parameters of Gaseous Detonations,” Fiz. Goreniya Vzryva 19(6), 65–76 (1983) [Combust., Expl., Shock Waves 19 (6), 752–767 (1983)].

    Google Scholar 

  2. J. Warnatz, “The Structure of Laminar Alkane-, Alkeneand Acetylene Flames,” Proc. Combust. Inst. 18, 749–767 (1981).

    Article  Google Scholar 

  3. C. K. Law, Combustion Physics (Cambridge University Press, 2006).

    Book  Google Scholar 

  4. C. K. Westbrook, J. Creighton, and F. L. Dryer, “A Numerical Model of Chemical Kinetics of Combustion in Turbulent Flow Reactor,” J. Phys. Chem. 81, 2542 (1977).

    Article  Google Scholar 

  5. C. K. Westbrook, “Comprehensive Mechanism for Methanol Oxidation,” Combust. Sci. Technol. 20, 125–140 (1979).

    Article  Google Scholar 

  6. Y. Hidaka, W. C. Gardiner, and C. S. Eubank, Jr., “Shock-Tube and Modeling Study of Methane Pyrolysis and Oxidation,” J. Mol. Sci. 2, 141–153 (1982).

    Google Scholar 

  7. A. V. Fedorov, D. A. Tropin, and I. A. Bedarev, “Mathematical Modeling of Detonation Suppression in a Hydrogen-Oxygen Mixture by Inert Particles,” Fiz. Goreniya Vzryva 46(3), 103–115 (2010) [Combust., Expl., Shock Waves 46 (3), 332–343 (2010)].

    Google Scholar 

  8. A. V. Fedorov, P. A. Fomin, V. M. Fomin, D. A. Tropin, and J.-R. Chen, Physicomathematical Modeling of Detonation Suppression by Clouds of Fine Particles (NGASU, Novosibirsk, 2011) [in Russian].

    Google Scholar 

  9. A. V. Fedorov, P. A. Fomin, V. M. Fomin, D. A. Tropin, and J. R. Chen, Mathematical Analysis of Detonation Suppression by Inert Particles (Kao Tech. Publ., Kaohsiung, Taiwan, 2012).

    Google Scholar 

  10. P. A. Fomin and J.-R. Chen, “Effect of Chemically Inert Particles on Parameters and Suppression of Detonation in Gases,” Fiz. Goreniya Vzryva 45(3), 77–88 (2009) [Combust., Expl., Shock Waves 45 (3), 303–313 (2009)].

    Google Scholar 

  11. A. V. Fedorov and D. A. Tropin, “Modeling of Detonation Wave Propagation through a Cloud of Particles in a Two-Velocity Two-Temperature Formulation,” Fiz. Goreniya Vzryva 49(2), 61–70 (2013) [Combust., Expl., Shock Waves 49 (2), 178–187 (2013)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Tropin.

Additional information

Original Russian Text © D.A. Tropin, A.V. Fedorov.

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 5, pp. 48–52, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tropin, D.A., Fedorov, A.V. Physicomathematical modeling of detonation suppression by inert particles in methane-oxygen and methane-hydrogen-oxygen mixtures. Combust Explos Shock Waves 50, 542–546 (2014). https://doi.org/10.1134/S0010508214050098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214050098

Keywords

Navigation