Skip to main content
Log in

Spatial and temporal resolution of the particle image velocimetry technique in flame speed measurements

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Limitations of the spatial and temporal resolution of the particle image velocimetry (PIV) technique in velocity field measurements in a laminar flame have been investigated. The limitations are due to the need to introduce a suspension of tracer particles into the flow. For a methane-air mixture with a stoichiometry coefficient of 0.9, it is determined that at a mass fraction of TiO2 solid particles over 0.08%, the change in the flame propagation velocity by the particles exceeds 5%. The maximum spatial resolution of PIV for which the influence of the particles is insignificant corresponds to a concentration of 0.03%; in this case, the minimum resolvable scale is limited by a value 200 times larger than the size of tracer particles. Based on analytical estimates and a comparison of measured and numerically calculated particle velocities in the flame, it is concluded that particles smaller than 2 µm adequately track the flow velocity. Under these conditions, the error of the velocity measurement is mainly determined by the limited spatial resolution of PIV. The results of the work can be used to evaluate PIV measurement errors in other experimental studies of flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Mungal, L. M. Lourenco, and A. Krothapalli, “Instantaneous Velocity Measurements in Laminar and Turbulent Premixed Flames Using On-line PIV,” Combust. Sci. Technol. 106, 239–265 (1995).

    Article  Google Scholar 

  2. C. J. Sung, C. K. Law, and R. L. Axelbaum, “Thermophoretic Effects on Seeding Particles in LDV Measurements of Flames,” Combust. Sci. Technol. 99, 119–132 (1994).

    Article  Google Scholar 

  3. A. Stella, G. Guj, J. Kompenhans, M. Raffel, and H. Richard, “Application of Particle Image Velocimetry to Combusting Flows: Design Considerations and Uncertainty Assessment,” Exp. Fluids 30, 167–180 (2001).

    Article  Google Scholar 

  4. D. Han and M. G. Mungal, “Simultaneous Measurements of Velocity and CH Distributions. Part 1: Jet Flames in Co-Flow,” Combust. Flame 132, 565–590 (2003).

    Article  Google Scholar 

  5. S. V. Alekseenko, V. M. Dulin, Y. S. Kozorezov, D. M. Markovich, S. I. Shtork, M. P. Tokarev, “Flow Structure of Swirling Turbulent Propane Flames,” Flow Turb. Combust. 87, 569–595 (2011).

    Article  MATH  Google Scholar 

  6. Y.-H. Li, C.-Y. Wu, B.-C. Chen, and Y.-C. Chao, “Measurements of a High-Luminosity Flame Structure by a Shuttered PIV System,” Meas. Sci. Technol. 19, 045401 (2008).

    Article  ADS  Google Scholar 

  7. N. Bouvet, “Experimental and Numerical Studies of the Fundamental Flame Speeds of Methane/Air and Syngas (H2/CO)/Air Mixtures,” Ph.D. Thesis (The Univ. of Orleans, 2009).

    Google Scholar 

  8. S. V. Alekseenko, V. M. Dulin, and D. M. Markovich, “Stereo PIV Measurements of Fine-Scale Turbulence Statistics in a Free Jet Flow,” in Proc. 6th Int. Symp. Turbulence, Heat Mass Transfer, Ed. by K. Hanjalić, Y. Nagano, and S. Jakirlić (Begell House, Rome, 2009).

    Google Scholar 

  9. A. Melling, “Tracer Particles and Seeding for Particle Image Velocimetry,” Meas. Sci. Technol. 8, 1406–1416 (1997).

    Article  ADS  Google Scholar 

  10. D. Ragni, F. Schrijer, B. W. Van Oudheusden, and F. Scarano, “Particle Tracer Response Across Shocks Measured by PIV,” Exp. Fluids 50, 53–64 (2011).

    Article  Google Scholar 

  11. F. N. Egolfopoulos and C. S. Campbell, “Dynamics and Structure of Dusty Reactig Flows: Inert Particles in Strained, Laminar, Premixed Flames,” Combust. Flame 117, 206–226 (1999).

    Article  Google Scholar 

  12. M. G. Andac, F. N. Egolfopoulos, C. S. Campbell, and R. Lauvergne, “Effects of Inert Dust Clouds on the Extinction of Strained, Laminar, Flames at Normal and Micro-Gravity,” Proc. Combust. Inst. 28, 2921–2929 (2000).

    Article  Google Scholar 

  13. M. G. Andac, F. N. Egolfopoulos, and C. S. Campbell, “Premixed Flame Extinction by Inert Particles in Normal- and Micro-Gravity,” Combust. Flame 129, 179–191 (2002).

    Article  Google Scholar 

  14. B. Lewis and G. von Elbe, “Stability and Structure of Burner Flames,” J. Chem. Phys. 11, 75–97 (1943).

    Article  ADS  Google Scholar 

  15. G. E. Andrews and D. Bradley, “Determination of Burning Velocities: A Critical Review,” Combust. Flame 18, 133–153 (1972).

    Article  Google Scholar 

  16. K. K. Kuo, Principles of Combustion (Wiley, 2005), pp. 100–120.

    Google Scholar 

  17. H. Mache and A. Hebra, Zur Messung der Verbrennungsgeschwindigkeit Explosiver Gasemische (Sitzungsber. Kaiserl. Akad. Wiss., Wien, 1941), Abt. IIa, pp. 150–157.

    Google Scholar 

  18. M. P. Tokarev, D. M. Markovich, and A. V. Bilsky, “Adaptive Algorithms for PIV Image Processing,” J. Comput. Technol. 12, 109–131 (2007).

    MATH  Google Scholar 

  19. R. D. Keane and R. J. Adrian, “Theory of Cross-Correlation Analysis of PIV Images,” Appl. Sci. Res. 49, 191–215 (1992).

    Article  Google Scholar 

  20. M. Frenklach, H. Wang, M. Goldenberg, G. P. Smith, D. M. Golden, C. T. Bowman, R. K. Hanson, W. C. Gardiner, and V. Lissianski, Gas Research Institute Report No. GRI-95/0058 (1999); http://www.me.berkeley.edu/grimech/.

    Google Scholar 

  21. I.V. Rybitskaya, A. G. Shmakov, V. M. Shvartsberg, and O. P. Korobeinichev, “Effect of the Equivalence Ratio on the Effectiveness of Inhibition of Laminar Premixed Hydrogen-Air Flames and Hydrocarbon-Air Flames by Trimethylphosphate,” Fiz. Goreniya Vzryva 44(2), 14–22 (2008) [Combust., Expl., Shock Waves 44 (2), 133–140 (2008)].

    Google Scholar 

  22. C. M. Vagelopoulos, F. N. Egolfopoulos, and C. K. Law, “Further Considerations on the Determination of Laminar Flame Speeds with the Counter Flow Twin-Flame Technique,” Proc. Combust. Inst. 25, 1341–1347 (1994).

    Article  Google Scholar 

  23. A. Van Maaren and L. P. H. de Goey, “Strech and Adiabatic Burning Velocity of Methane and Propane-Air Flames,” Combust. Sci. Technol. 102, 309–314 (1994).

    Article  Google Scholar 

  24. C. M. Vagelopoulos and F. N. Egolfopoulos, “Direct Experimental Determination of Laminar Flame Speeds,” Proc. Combust. Inst. 27, 513–519 (1998).

    Article  Google Scholar 

  25. M. I. Hassan, K. T. Aung, and G. M. Faeth, “Measured and Predicted Properties of Laminar Premixed Methane/Air Flames at Various Pressures,” Combust. Flame 115, 539–550 (1998).

    Article  Google Scholar 

  26. X. J. Gu, M. Z. Haq, M. Lawes, and R. Woolley, “Laminar Burning Velocity and Markstein Lengths of Methane-Air Mixtures,” Combust. Flame 121, 41–58 (2000).

    Article  Google Scholar 

  27. I.V. Dyakov, A. A. Konnov, J. De Ruyck, K. J. Bosschaart, E. C. M. Brock, and L. P. H. de Goey, “Measurement of Adiabatic Burning Velocity in Methane-Oxygen-Nitrogen Mixtures,” Combust. Sci. Technol. 172, 81–96 (2001).

    Article  Google Scholar 

  28. K. J. Bosschaart, L. P. H. de Goey, and J. M. Burgers, “The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured with the Heat Flux Method,” Combust. Flame 136, 261–269 (2004).

    Article  Google Scholar 

  29. M. Matalon, “On Flame Stretch,” Combust. Sci. Technol. 31, 169–181 (1983).

    Article  Google Scholar 

  30. S. H. Chung and C. K. Law, “An Invariant Derivation of Flame Stretch,” Combust. Flame 55, 123–125 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Korobeinichev.

Additional information

Original Russian Text © O.P. Korobeinichev, A.G. Shmakov, A.A. Chernov, D.M. Markovich, V.M. Dulin, D.K. Sharaborin.

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 5, pp. 13–21, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobeinichev, O.P., Shmakov, A.G., Chernov, A.A. et al. Spatial and temporal resolution of the particle image velocimetry technique in flame speed measurements. Combust Explos Shock Waves 50, 510–517 (2014). https://doi.org/10.1134/S0010508214050025

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214050025

Keywords

Navigation