Skip to main content
Log in

Simulation of heat transfer and chemical reaction of a combustible mixture in a flow reactor

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The modes of operation of a flow reactor with an inert inner body were investigated. A numerical study of the combustion of a methane-air mixture was performed. The parameter ranges of possible modes of reactor operation were determined depending on the dimensionless parameters of heat exchange of the mixture with the inert body and the side surface and the mixture flow parameter. The existence of non-uniqueness regions of operation modes is shown. The influence of the inert inner body on the distribution of the regions of possible modes of reactor operation is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Perlmutter, Stability of Chemical Reactors (Prentice-Hall, New York, 1972).

    Google Scholar 

  2. V. A. Arkhipov, Chemical-Engineering System. Modeling and Control: Handbook (Tomsk State Univ., Tomsk, 2007) [in Russian].

    Google Scholar 

  3. N. E. Kolovertnykh, S. I. Khudyaev, and A. S. Shteinberg, “Characteristic Conditions of an Exothermic Reaction in a Porous Body-Gas System,” Fiz. Goreniya Vsryva 16(4), 67–75 (1980) [Combust., Expl., Shock Waves 16 (4), 416–422 (1980)].

    Google Scholar 

  4. R. S. Burkina and V. N. Vilyunov, “Asymptotic Analysis of Relaxation Oscillations in an Ideal Mixing Reactor during Heat Transfer to Its Walls,” Khim. Fiz. 4(12), 1703–1706 (1985).

    Google Scholar 

  5. B. L. Korsunskii, N. G. Samoilenko, E. V. Deyun, and A. O. Il’chenko, “Steady-State Regimes of the Exothermic Autocatalytic Reaction in an Ideal-Mixing Reactor,” Khim. Fiz. 27(6), 14–19 (2008).

    Google Scholar 

  6. R. S. Burkina and K. M. Moiseeva, “Combustion in an Ideal-Mixing Reactor with an Inert Inner Nozzle,” Khim. Fiz. 33(5), 47–53 (2014).

    Google Scholar 

  7. O. S. Rabinovich, M. A. Silenkov, and G. A. Fateev, “Oscillatory Modes of Combustion of a Gas Mixture in Small Diameter Tubes,” Inzh.-Fiz. Zh. 71(4), 579–583 (1998).

    Google Scholar 

  8. K. Maruta, J. K. Parc, K. C. Oh, T. Fujimori, S. S. Minaev, and R. V. Fursenko, “Characteristics of Microscale Combustion in a Narrow Heated Channel,” Fiz. Goreniya Vsryva 40(5), 21–29 (2004) [Combust., Expl., Shock Waves 40 (5), 516–523 (2004)].

    Google Scholar 

  9. A. G. Knyazeva and Yu. A. Chumakov, “Two-Temperature Model of Gas Combustion in a Burner Model of Cylindrical Shape,” Izv. Tomsk. Polytekh. Univ. 311(4), 24–30 (2007).

    Google Scholar 

  10. V. G. Prokof’ev, A. I. Kirdyashkin, V. G. Salamatov, and V. K. Smolyakov, “Unsteady Combustion of Gases in an Inert Porous Layer,” Fiz. Goreniya Vsryva 46(6), 32–38 (2010) [Combust., Expl., Shock Waves 46 (6), 641–646 (2010)].

    Google Scholar 

  11. S. A. Bostandzhiyan and K. G. Shkadinskii, “Multiplicity of Steady States and Transition Regimes in a Cylindrical Reactor with a Fixed Catalyst Bed,” Teor. Osnovy Khim. Tekhnol. 44(2), 131–137 (2010).

    Google Scholar 

  12. E. V. Deyun, B. L. Korsunskii, N. G. Samoilenko, and Yu. N. Finaeva, “Thermal Regimes of a Countercurrent Reactor. Gas-Liquid System,” Khim. Fiz. 31(1), 33–37 (2012).

    Google Scholar 

  13. L. V. Kustova, Yu. N. Finaeva, N. G. Samoilenko, and B. L. Korsunskii, “Two-Temperature Model of a Countercurrent Displacement Reactor. Gas-Liquid System,” Khim. Fiz. 31(7), 36–40 (2012).

    Google Scholar 

  14. H. Kuchling, Physik, Nachschlagerbucher fur Grundlagenfacher (VEB Fachbuchverlag, Leipzig, 1980).

    Google Scholar 

  15. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Nauka, Moscow, 1980; Plenum, New York, 1985).

    Google Scholar 

  16. R. S. Burkina and K. M. Moiseeva, “Influence of the Length of a Flow Reactor on the Combustion Modes of a Methane-Air Mixture Therein,” Izv. Vyssh. Uchebn. Zaved., Fiz 56(6/3), 104–107 (2013).

    Google Scholar 

  17. R. S. Burkina and K. M. Moiseeva, “Dynamics of Chemical Processes in a Flow Reactor with Heat Transfer on the Side Surface of the Reactor and an Inert Nozzle Inside It,” in Chaos and Structures in Nonlinear Systems. Theory and Experiment (Karaganda, 2012), pp. 300–306 [in Russian].

    Google Scholar 

  18. R. S. Burkina and K. M. Moiseeva, “Exothermic Chemical Reaction in a Flow Reactor,” in High Technology in Modern Science and Technology, Proc. II All-Russian Scientific-Technical Conference of Young Scientists and Students with International Participation (Tomsk, 2013), Vol. 2, pp. 404–408.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Moiseeva.

Additional information

Original Russian Text © R.S. Burkina, K.M. Moiseeva.

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 5, pp. 3–12, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkina, R.S., Moiseeva, K.M. Simulation of heat transfer and chemical reaction of a combustible mixture in a flow reactor. Combust Explos Shock Waves 50, 501–509 (2014). https://doi.org/10.1134/S0010508214050013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214050013

Keywords

Navigation