Skip to main content
Log in

Pressure transmission in aluminum foams impacted by underwater explosion waves

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The interaction of underwater explosion waves with aluminum foam plates with different cell types is investigated. It is shown that the transmitted wave that passed through a closed-cell sample can be decomposed into two parts, one with a low-frequency content, which corresponds to the gas pressure in the pores, and one with a high-frequency content, which is argued to be a coupling of waves transmitted by the matrix and wave interactions between the fluid and the matrix of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range,” J. Acoust. Soc. Amer. 28(2), 168–178 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range,” J. Acoust. Soc. Amer. 28(2), 179–191 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  3. T. J. Plona, “Observation of a Second Bulk Compressional Wave in a Porous Medium at Ultrasonic Frequencies,” Appl. Phys. Lett. 36(4), 259–261 (1980).

    Article  ADS  Google Scholar 

  4. B. Arntsen and J. M. Carcione, “Numerical Simulation of the Biot Slow Wave in Water-Saturated Nivelsteiner Sandstone,” Geophys. 66(3), 890–896 (2001).

    Article  Google Scholar 

  5. G. Mazor, G. Ben-Dor, O. Igra, et al., “Shock Wave Interaction with Cellular Materials. Part I: Analytical Investigation and Governing Equations,” Shock Waves 3(3), 159–165 (1994).

    Article  ADS  MATH  Google Scholar 

  6. G. Mazor, G. Ben-Dor, O. Igra, et al., “Shock Wave Interaction with Cellular Materials. Part II: Open Cell Foams; Experimental and Numerical Results,” Shock Waves 3(3), 167–179 (1994).

    Article  ADS  Google Scholar 

  7. Li Shun-Bo, Dong Zhao-Xing, Qi Yan-Jun, et al., “Numerical Simulation on Propagation of Underwater Blast Shock Wave in Absorber Structure,” Chin. J. High Pressure Phys. 23(5), 360–366 (2009).

    Google Scholar 

  8. D. N. Mikhailov, “Difference between the Longitudinal Frenkel-Biot Waves in Water- and Gas-Saturated Porous Media,” Fluid Dyn. 41(1), 112–120 (2006).

    Article  ADS  Google Scholar 

  9. Wang Yue, “Influence of Pore Structures on the Underwater Sound Absorbing Properties of Open Pore Foamed Aluminum,” Dev. Appl. Mater. 16(4), 16–18 (2001).

    Google Scholar 

  10. D. M. J. Smeulders, J. P. M. De La Rosette, and M. E. H. Van Dongen, “Waves in Partially Saturated Porous Media,” Transp. Porous Media 9(1), 25–37 (1992).

    Article  Google Scholar 

  11. V. E. Nakoryakov, V. V. Kuznetsov, and V. E. Dontsov, “Pressure Waves in Saturated Porous Media,” Int. J. Multiphase Flow 15,(6), 857–875 (1989).

    Article  MATH  Google Scholar 

  12. V. E. Dontsov and V. E. Nakoryakov, “Enhancement of Shock Waves in a Porous Medium Saturated with a Liquid Containing Soluble-Gas Bubbles,” Int. J. Multiphase Flow 27(12), 2023–2041 (2001).

    Article  MATH  Google Scholar 

  13. R. H. Cole, Underwater Explosion (Princeton Univ. Press., New York, 1948).

    Google Scholar 

  14. A. Levy, G. Ben-Dor, B. W. Skews, et al., “Head-on Collision of Normal Shock Waves with Rigid Porous Materials,” Exp. Fluids 15(3), 183–190 (1993).

    Article  Google Scholar 

  15. B. Skews, “Shock Wave Interaction with Porous Plates,” Exp. Fluids 39(5), 875–884 (2005).

    Article  Google Scholar 

  16. G. Rude and J. E. Slate, “Small-Scale Tank Facility for Studying Underwater Explosion Phenomena,” in 69th Shock and Vibration Symp. (1998), pp. 663–673.

    Google Scholar 

  17. V. Kazemi-Kamyab, K. Subramaniam, and Y. Andreopoulos, “Stress Transmission in Porous Materials Impacted by Shock Waves,” J. Appl. Phys. 109(1), 1–18 (2011).

    Article  Google Scholar 

  18. P. J. Brown, M. Batzle, M. Peeters, et al., “Shock Tube Experiments and the Observation of the Biot Slow Wave in Natural Rocks,” SEG Expanded Abstr. 19, 1846–1849 (2000).

    Google Scholar 

  19. A. A. Gubaidulin, A. Britan, and D. N. Dudko, “Air Shock Wave Interaction with an Obstacle Covered by Porous Material,” Shock Waves 13(1), 41–48 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. -Q. Fan.

Additional information

Original Russian Text © Z.-Q. Fan, H.-H. Ma, Z.-W. Shen, M.-J. Lin.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 50, No. 3, pp. 122–129, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z.Q., Ma, H.H., Shen, Z.W. et al. Pressure transmission in aluminum foams impacted by underwater explosion waves. Combust Explos Shock Waves 50, 354–361 (2014). https://doi.org/10.1134/S0010508214030149

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214030149

Keywords

Navigation