Skip to main content
Log in

Influence of laser wavelength on the critical energy density for initiation of energetic materials

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Critical densities of the energy of laser initiation of PETN containing nanoscale aluminum inclusions at radiation wavelengths of 1064 and 532 nm were measured experimentally. The critical initiation-energy density that corresponds to a 50%th probability of explosion was 1.15 J/cm2 for the first harmonic of a neodymium laser and 0.7 J/cm2 for the second. The dependence of the efficiency of radiation absorption by aluminum on the size of metal nanoparticles for the first and second harmonics of a neodymium laser is calculated. It is shown that the particle diameter corresponding to the absorption efficiency maximum and the amplitude of the maximum depend on the radiation wavelength. The absorption efficiency maximum for the first harmonic is observed in an inclusion 204 nm in diameter, and for the second, in an inclusion 96 nm in diameter. The amplitude of the maximum increases from 0.351 at a wavelength of 1064 nm to 0.490 at a wavelength of 532 nm. Dependences of the critical initiation energy density for energetic materials on the radius of metallic nanoparticles are calculated. Qualitative agreement between theoretical and experimental results is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Ilyushin, I. V. Tselinskii, A. V. Smirnov, I. V. Bachurina, V. B. Ostashev, and V. V. Blagoveshchenskii, “Laser Initiation of Photosensitive Metal Complexes of 3-hydrazino-4-amino-1,2,4-triazole,” Izv. Sankt-Peterburg. Gos. Tekhnol. Inst. (Tekh. Univ.), No. 13, 56–60 (2012).

    Google Scholar 

  2. A. V. Chernai, V. V. Sobolev, V. A. Chernai, M. A. Ilyushin, and A. Dlugashek, “Laser Ignition of Explosive Compositions Based on di-(3-hydrazino-4-amino-1,2,3-triazole)-Copper(II) Perchlorate,” Fiz. Goreniya Vzryva 39(3), 105–110 (2003) [Combust., Expl., Shock Waves 39 (3), 335–339 (2003)].

    Google Scholar 

  3. B. P. Aduev and D. R. Nurmukhametov, “Influence of Aluminum Nanoparticle Additives on Tetranitropentaerytrite Sensitivity to Laser Action,” Khim. Fiz. 30(3), 63–65 (2011).

    Google Scholar 

  4. B. P. Aduev, G. M. Belokurov, D. R. Nurmukhametov, and N. V. Nelyubina, “Photosensitive Material Based on PETN Mixtures with Aluminum Nanoparticles,” Fiz. Goreniya Vzryva 48(3), 127–132 (2012) [Combust., Expl., Shock Waves 48 (3), 361–366 (2012)].

    Google Scholar 

  5. B. P. Aduev, G. M. Belokurov, A. G. Krechetov, N. V. Nelyubina, and D. R. Nurmukhametov, “Sensitivity of a Mechanical Mixture of Pentaerythrite Tetranitrate and Ni-C Nanoparticles to Explosion Initiation by Laser Pulses,” Fiz. Goreniya Vzryva 45(1), 68–72 (2009) [Combust., Expl., Shock Waves 45 (1), 59–63 (2009)].

    Google Scholar 

  6. E. I. Aleksandrov and V. P. Tsipilev, “Effect of the Pulse Length on the Sensitivity of Lead Azide to Laser Radiation,” Fiz. Goreniya Vzryva 20(6), 104–109 (1984) [Combust., Expl., Shock Waves 20 (6), 690–694 (1984)].

    Google Scholar 

  7. V. G. Krieger, A. V. Kalenskii, A. A. Zvekov, I. Yu. Zykov, and A. P. Nikitin, “Heat Transfer Processes during Laser Heating of Inclusions in an Inert Matrix,” Teplofiz. Aeromekh. 20(3), 375–382 (2013).

    Google Scholar 

  8. I. G. Assovskii, Combustion Physics and Internal Ballistics (Nauka, Moscow, 2005) [in Russain].

    Google Scholar 

  9. E. I. Aleksandrov, A. G. Voznyuk, and V. P. Tsipilev, “Effect of Absorbing Impurities on Explosive Initiation by Laser Light,” Fiz. Goreniya Vzryva 25(1), 3–9 (1989) [Combust., Expl., Shock Waves 25 (1), 1–7 (1989)].

    Google Scholar 

  10. R. S. Burkina, E. Yu. Morozova, and V. P. Tsipilev, “Initiation of a Reactive Material by a Radiation Beam Absorbed by Optical Heterogeneities of The Material,” Fiz. Goreniya Vzryva 47(5), 95–105 (2011) [Combust., Expl., Shock Waves 47 (5), 581–590 (2011)].

    Google Scholar 

  11. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, I. Yu. Zykov, and B. P. Aduev, “Effect of Laser Radiation Absorption Efficiency on the Heating Temperature of Inclusions in Transparent Media,” Fiz. Goreniya Vzryva 48(6), 54–58 (2012) [Combust., Expl., Shock Waves 48 (6), 705–708 (2012)].

    Google Scholar 

  12. V. M. Lisitsyn et al., “Effect of the Laser Radiation Wavelength on the Energy Threshold of Initiation of Heavy Metal Azides,” Fiz. Goreniya Vzryva 47(5), 106–116 (2011) [Combust., Expl., Shock Waves 47 (5), 591–600 (2011)].

    Google Scholar 

  13. V. G. Kriger, A. V. Kalenskii, and V. V. Kon’kov, “Threshold Energy for Initiating the Silver Azide by Excimer Laser,” Materialovedenie, No. 7, 2–8 (2003).

    Google Scholar 

  14. E. D. Aluker, N. L. Aluker, A. G. Krechetov, A. Yu. Mitrofanov, D. R. Nurmukhametov, and V. N. Shvayko, “Laser Initiation of PETN in Resonant Absorption,” Khim. Fiz. 30(1), 48–55 (2011).

    Google Scholar 

  15. Combustion Physics, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  16. V. A. Rabinovich and Z. Ya. Khavin, Quick Reference Book on Chemistry (Khimiya, Leningrad, 1991) [in Russian].

    Google Scholar 

  17. E. T. Denisov, Homolytic Liquid-Phase Reaction Rate Constants (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  18. Yu. A. Lebedev, E. A. Miroshnichenko, and Yu. K. Knobel, Thermochemistry of Nitrocompounds (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  19. I. Yu. Zykov, “Accounting for Absorption Efficiency when Heating Nanoinclusions by Laser Radiation,” Sovr. Fund. Prikl. Issl., No. 3(6), 42–48 (2012).

    Google Scholar 

  20. S. V. Andreev, L. A. Gubanova, and E. S. Putilin, Optical Coatings (NRU ITMO, St. Petersburg, 2006) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kriger.

Additional information

Original Russian Text © A.V. Kalenskii, A.A. Zvekov, M.V. Anan’eva, I.Yu. Zykov, V.G. Kriger, B.P. Aduev.

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 3, pp. 98–104, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalenskii, A.V., Zvekov, A.A., Anan’eva, M.V. et al. Influence of laser wavelength on the critical energy density for initiation of energetic materials. Combust Explos Shock Waves 50, 333–338 (2014). https://doi.org/10.1134/S0010508214030113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214030113

Keywords

Navigation