Skip to main content
Log in

Description of dynamic processes in two-phase colliding media with the use of molecular-kinetic approaches

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A model of a reacting two-phase medium consisting of a gas and incompressible particles, which takes into account the collisional dynamics of random motion of particles, is presented. Molecular-kinetic approaches of the theory of granular media are applied. Shock wave patterns are analyzed, and conditions on strong discontinuities in the two-phase mixture are obtained. Two types of discontinuities are identified: without and with generation of the random energy on the shock wave. For shock waves of the second type, the amplitude of the particle concentration is independent of the wave propagation velocity. The model is verified against the results on the velocity of sound measured in mixtures ejected from a high-pressure chamber of a shock tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kh. O. Rakhmatullin, “Fundamentals of Gas Dynamics of Interpenetrating Motions of Compressible Media,” Prikl Mat. Mekh. 20(2) (1956).

    Google Scholar 

  2. R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987; Hemisphere, New York, 1991).

    Google Scholar 

  3. V. N. Nikolaevsii, “Hydrodynamic Analysis of Shock Adiabats of Heterogeneous Mixtures of Substances,” Prikl. Mekh. Tekh. Fiz. 10(3), 82–88 (1969) [Appl. Mech. Tech. Phys. 10 (3), 406–411 (1969)].

    Google Scholar 

  4. N. N. Yanenko, R. I. Soloukhin, A. N. Papyrin, and V. M. Fomin, Supersonic Two-Phase Flows Under Conditions of Velocity Nonequilibrium of Particles (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  5. A. E. Medvedev, A. V. Fedorov, and V. M. Fomin, “Description of Ignition and Combustion of Gas Mixtures with Solid Particles by Methods of the Mechanics of Continuous Media,” Fiz. Goreniya Vzryva 20(2), 3–9 (1984) [Combust., Expl., Shock Waves 20 (2), 127–132 (1984)].

    Google Scholar 

  6. A. V. Fedorov, V. M. Fomin, and T. A. Khmel’, Heterogeneous Detonation of Gas Suspensions (Izd. Novosib. Gos. Tekh. Univ., Novosibirsk, 2012) [in Russian].

    Google Scholar 

  7. A. V. Fedorov and V. M. Fomin, “Application of Methods of Mechanics of Heterogeneous Media to the Theory of Gas Filtration in Coal Strata,” in Dynamics of Multiphase Media, Ed. by N. N. Yanenko (Novosibirsk, 1981), pp. 49–59 [in Russian].

    Google Scholar 

  8. Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, “Investigation of Isothermal Shock Wave Structures and Calculation of Spreading of a Gas Suspension Cloud,” Preprint No. 8-86 (Inst. Theor. Appl. Mech., Sib. Branch, Acad. of Sci. of the USSR, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  9. Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, “Structure of Isothermal Shock Waves in Gas Suspensions,” in Problems of the Theory of Filtration and Mechanism of Increasing Oil Production (collected scientific papers) (Nauka, Moscow, 1987), pp. 108–115 [in Russian].

    Google Scholar 

  10. A. V. Fedorov and V. M. Fomin, “On the Theory of the Combined Discontinuity in Gas Suspensions,” in Physical Gas Dynamics of Reacting Media (collected scientific papers) (Nauka, Novosibirsk, 1990), pp. 18–134 [in Russian].

    Google Scholar 

  11. A. V. Fedorov and V. M. Fomin, “Numerical Study of Flows of Reacting Composite Mixtures,” Prikl. Mekh. Tekh. Fiz. 40(2), 128–136 (1999) [Appl. Mech. Tech. Phys. 40 (2), 300–307 (1999)].

    MATH  Google Scholar 

  12. Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, “Calculation of the Dispersion of a Compressed Volume of a Gas Suspension,” Prikl. Mekh. Tekh. Fiz. 28(5), 139–143 (1987) [Appl. Mech. Tech. Phys. 28 (5), 773–777 (1987)].

    Google Scholar 

  13. M. R. Baer and J. W. Nunziato, “A Two-Phase Mixture Theory for the Deflagration to Detonation Transition (DDT) in Reactive Granular Materials,” Int. J. Multiphase Flow 12, 861–889 (1986).

    Article  MATH  Google Scholar 

  14. J. M. Powers, D. S. Stewart, and H. Krier, “Theory of Two-Phase Detonation. Part I: Modelling,” Combust. Flame 80, 264–279 (1990).

    Article  Google Scholar 

  15. J. B. Bdzil, R. Menikoff, S. F. Son., A. K. Kapila, and D. S. Stewart, “Two-Phase Modeling of DDT in Granular Materials: A Critical Examination of Modeling Issues,” Phys. Fluids, No. 11, 378–402 (1999).

    Google Scholar 

  16. S. Xu and D. S. Stewart, “Deflagration-to-Detonation Transition in Porous Energetic Materials: A Comparative Model Study,” J. Eng. Math. 31, 143–172 (1997).

    Article  MATH  Google Scholar 

  17. A. V. Fedorov, “Mathematical Description of the Flow of a Mixture of Condensed Materials at High Pressures,” in Physical Gas Dynamics of Reacting Media (collected scientific papers) (Nauka, Novosibirsk, 1990), pp. 119–128 [in Russian].

    Google Scholar 

  18. A. V. Fedorov, “Structure of the Shock Wave in a Mixture of Two Solids (Hydrodynamic Approximation),” Model. Mekh. 5(22) (4), 135–158 (1991).

    MathSciNet  Google Scholar 

  19. E. V. Varlamov and A. V. Fedorov, “Travelling Wave in a Nonisothermal Mixture of Solids,” Model. Mekh. 5(22) (3), 14–26 (1991).

    MathSciNet  Google Scholar 

  20. A. V. Fedorov and A. A. Zhilin, “The Shock Wave Structure in a Two-Velocity Mixture of Compressible Media with Different Pressures,” Prikl. Mekh. Tekh. Fiz. 39(2), 10–19 (1998) [Appl. Mech. Tech. Phys. 39 (2), 166–174 (1998)].

    MATH  MathSciNet  Google Scholar 

  21. A. V. Fedorov and N. N. Fedorova, “Structure, Propagation, and Reflection of Shock Waves in a Mixture of Solids (The Hydrodynamic Approximation),” Prikl. Mekh. Tekh. Fiz. 33(4), 10–18 (1992) [Appl. Mech. Tech. Phys. 33 (4), 487–493 (1992)].

    MathSciNet  Google Scholar 

  22. A. V. Fedorov and A. A. Zhilin, “Propagation of Shock Waves in a Two-Phase Mixture with Different Pressures,” Prikl. Mekh. Tekh. Fiz. 40(1), 55–63 (1999) [Appl. Mech. Tech. Phys. 40 (1), 46–53 (1999)].

    MATH  MathSciNet  Google Scholar 

  23. A. G. Kutushev and D. A. Rudakov, “Numerical Investigation of the Parameters of the Air Shocks Associated with the Expansion of a Powder Layer,” Fiz. Goreniya Vzryva 28(6), 105–112 (1992) [Combust., Explos., Shock Waves 28 (6), 670–676 (1992)].

    Google Scholar 

  24. A. G. Kutushev, Mathematical Modeling of Wave Processes in Aerodisperse and Powdered Media (Nedra, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  25. A. A. Gubaidullin, A. Britain, and D. N. Dudko, “Air Shock Wave Interaction with an Obstacle Covered by Porous Material,” Shock Waves 13, 41–48 (2003).

    Article  MATH  ADS  Google Scholar 

  26. A. V. Fedorov, “Structure of a Combination Discontinuity in Gas Suspensions in the Presence of Random Pressure from Particles,” Prikl. Mekh. Tekh. Fiz. 33(5), 36–41 (1992) [Appl. Mech. Tech. Phys. 33 (5), 648–652 (1992)].

    Google Scholar 

  27. M. A. Gol’dshtik, “Elementary Theory of the Boiling Layer,” Prikl. Mekh. Tekh. Fiz. 13(6), 106–112 (1972) [Appl. Mech. Tech. Phys. 13 (6), 851–856 (1972)].

    Google Scholar 

  28. M. A. Gol’dshtik and B. N. Kozlov, “Elementary Theory of Concentrated Disperse Systems,” Prikl. Mekh. Tekh. Fiz. 14(4), 67–77 (1973) [Appl. Mech. Tech. Phys. 14 (4), 492–500 (1973)].

    Google Scholar 

  29. A. Goldshtein and M. Shapiro, “Mechanics of Collisional Motion of Granular Materials. Part I. General Hydrodynamics Equations,” J. Fluid Mech. 282, 75–114 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. A. Goldshtein, M. Shapiro, and C. Gutfinger, “Mechanics of Collisional Motion of Granular Materials. Part 3: Self-Similar Shock Wave Propagation,” J. Fluid Mech. 316, 29–51 (1996).

    Article  MATH  ADS  Google Scholar 

  31. S. Serna and A. Marquina, “Capturing Blast Waves in Granular Flow,” Comp. Fluids 36(8), 1364–1372 (2007).

    Article  MATH  Google Scholar 

  32. D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions (Academic Press, Boston, 1994).

    MATH  Google Scholar 

  33. B. C. Fan, Z. H. Chen, X. H. Jiang, and H. Z. Li, “Interaction of a ShockWave with a Loose Dusty Bulk Layer,” Shock Waves 16, 179–187 (2007).

    Article  ADS  Google Scholar 

  34. S. Schneiderbauer, A. Aigner, and S. Pirker, “A Comprehensive Frictional-Kinetic Model for Gas-Particle Flows: Analysis of Fluidized and Moving Bed Regimes,” Chem. Eng. Sci. 80, 279–292 (2012).

    Article  Google Scholar 

  35. A. L. Kuhl and K. Balakrishnan, “Gasdynamic Model of Dilute Two-Phase Combustion Fields,” Fiz. Goreniya Vzryva 48(5), 59–76 (2012) [Combust., Explos., Shock Waves 48 (5), 544–560 (2012)].

    Google Scholar 

  36. B. E. Gel’fand, S. P. Medvedev, A. N. Polenov, et al., “Measurement of the Velocity of Weak Disturbances of Bulk density in Porous Media,” Prikl. Mekh. Tekh. Fiz. 27(1), 141–144 (1986) [Appl. Mech. Tech. Phys. 27 (1), 127–130 (1986)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Khmel’.

Additional information

Original Russian Text © T.A. Khmel’, A.V. Fedorov.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 50, No. 2, pp. 81–93, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmel’, T.A., Fedorov, A.V. Description of dynamic processes in two-phase colliding media with the use of molecular-kinetic approaches. Combust Explos Shock Waves 50, 196–207 (2014). https://doi.org/10.1134/S0010508214020117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214020117

Keywords

Navigation