Skip to main content
Log in

Skeletal mechanism of inhibition and suppression of a methane-air flame by addition of trimethyl phosphate

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A skeletal mechanism of inhibition and quenching of methane flames by addition of trimethyl phosphate was developed. It includes a mechanism of methane oxidation consisting of 19 elementary steps involving 15 species (including N2), and four elementary reactions involving three phosphorus-containing species (PO2, HOPO, and HOPO2). The developed skeletal mechanism adequately predicts the burning velocity of flames with added inhibitor over a range of equivalence ratio of 0.7–1.4 and can be used to model fire suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Law, “Combustion at a Crossroads: Status and Prospects,” Proc. Combust. Inst. 31, 1–29 (2007).

    Article  Google Scholar 

  2. F. Mauss, N. Peters, B. Rogg, and F. A. Williams, “Reduced Reaction Mechanisms for Premixed Hydrogen Flames,” in Reduced Kinetics Mechanisms for Applications in Combustion Systems, Ed. by N. Peters and B. Rogg (Springer-Verlag, New York, 1993), pp. 29–43. (Lecture Notes in Physics.)

    Chapter  Google Scholar 

  3. F. Mauss and N. Peters, “Reduced Reaction Mechanisms for Premixed Methane-Air Flames,” in Reduced Kinetics Mechanisms for Applications in Combustion Systems, Ed. by N. Peters and B. Rogg (Springer-Verlag, New York, 1993), pp. 58–75. (Lecture Notes in Physics.)

    Chapter  Google Scholar 

  4. P. Boivin, C. Jimenez, A. L. Sanchez, and F. A. Williams, “An Explicit Reduced Mechanism for H2-Air Combustion,” Proc. Combust. Inst. 33, 517–523 (2011).

    Article  Google Scholar 

  5. P. Boivin, C. Jiménez, A. L. Sánchez, and F. A. Williams, “A Four-Step Reduced Mechanism for Syngas Combustion,” Combust. Flame 158, 1059–1063 (2011).

    Article  Google Scholar 

  6. F. Maroteaux and L. Noel, “Development of a Reduced n-Heptane Oxidation Mechanism for HCCI Combustion Modeling,” Combust. Flame 146, 246–267 (2006).

    Article  Google Scholar 

  7. H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, “A Comprehensive Modeling. Study of n-Heptane Oxidation,” Combust. Flame 114, 149–177 (1998).

    Article  Google Scholar 

  8. Y. Ra and R. D. Reitz, “A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations with Primary Reference Fuels,” Combust. Flame 155, 713–738 (2008).

    Article  Google Scholar 

  9. K. Harstad and J. Bellan, “A Model of Reduced Oxidation Kinetics Using Constituents and Species: Iso-Octane and Its Mixtures with n-Pentane, Iso-Hexane and n-Heptane,” Combust. Flame 157 (11), 2184–2197 (2010).

    Article  Google Scholar 

  10. S. Tanaka, F. Ayala, and J. C. Keck, “A Reduced Chemical Kinetic Model for HCCI Combustion of Primary Reference Fuels in a Rapid Compression Machine,” Combust. Flame 133, 467–481 (2003).

    Article  Google Scholar 

  11. T. Tsurushima, “A New Skeletal PRF Kinetic Model for HCCI Combustion,” Proc. Combust. Inst. 32, 2835–2841 (2009).

    Article  Google Scholar 

  12. T. P-A. Santoni, A. Simeoni, J.-P. Garo, and J.-P. Vantelon, “Skeletal and Global Mechanisms for the Combustion of Gases Released by Crushed Forest Fuels,” Combust. Flame 156, 1565–1575 (2009).

    Article  Google Scholar 

  13. V. Leroy, E. Leoni, and P. A. Santoni, “Reduced Mechanism for the Combustion of Evolved Gases in Forest Fires,” Combust. Flame 154, 410–433 (2008).

    Article  Google Scholar 

  14. O. P. Korobeinichev and T. A. Bolshova, “Increasing the Burning Velocity of a Low-Pressure Hydrogen-Oxygen Flame by the Addition of Trimethyl Phosphate in Terms of Zel’dovich’s Chain Mechanism of Flame Propagation,” Fiz. Goreniya Vzryva 47(1), 15–21 (2011) [Combust., Expl., Shock Waves 47 (1), 12–18 (2011)].

    Google Scholar 

  15. Ya. B. Zel’dovich, “Chain Reactions in Hot Flames-an Approximate Theory of Flame Velocity,” Kinet. Katal. 11(3), 305–318 (1961).

    Google Scholar 

  16. O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, T. A. Bolshova, T. M. Jayaweera, C. F. Melius, W. J. Pitz, and C. K. Westbrook, “Flame Inhibition by Phosphorus-Containing Compounds in Lean and Rich Propane Flames,” Proc. Combust. Inst. 30, 2353–2360 (2005).

    Article  Google Scholar 

  17. O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, D. A. Knyazkov, and I. V. Rybitskaya, “Inhibition of Atmospheric Lean and Rich CH4/O2/Ar Flames by Phosphorus-Containing Compound,” Proc. Combust. Inst. 31 (2), 2741–2748 (2007).

  18. T. M. Jayaweera, C. F. Melius, W. J. Pitz, C. K. Westbrook, O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, and H. Curran, “Flame Inhibition by Phosphorus-Containing Compounds over a Range of Equivalence Ratios,” Combust. Flame 140(1/2), 103–115 (2005).

    Article  Google Scholar 

  19. O. P. Korobeinichev, I. V. Rybitskaya, A. G. Shmakov, A. A. Chernov, T. A. Bolshova, and V. M. Shvartsberg, “Inhibition of Atmospheric-Pressure H2/O2/N2 Flames by Trimethylphosphate over Range of Equivalence Ratio,” Proc. Combust. Inst. 32, 2591–2597 (2009).

    Article  Google Scholar 

  20. O. P. Korobeinichev, I. V. Rybitskaya, A. G. Shmakov, A. A. Chernov, T. A. Bolshova, and V. M. Shvartsberg, “Mechanism of Inhibition of Hydrogen-Oxygen Flames of Various Compositions by Trimethyl Phosphate,” Kinet. Katal. 51(2), 168–175 (2010).

    Article  Google Scholar 

  21. V. M. Shvartsberg, A. G. Shmakov, T. A. Bolshova, and O. P. Korobeinichev, “Mechanism for Inhibition of Atmospheric-Pressure Syngas/Air Flames by Trimethylphosphate,” Energy Fuels 26(9), 5528–5536 (2012).

    Article  Google Scholar 

  22. Organophosphorus Compounds Effect on Flame Speeds over a Range of Equivalence Ratios 2004. https://www-pls.llnl.gov/url=science and technologychemistry-combustion-organophosphorus over range.

  23. I. V. Rybitskaya, A. G. Shmakov, and O. P. Korobeinichev, “Propagation Velocity of Hydrocarbon-Air Flames Containing Organophosphorus Compounds at Atmospheric Pressure,” Fiz. Goreniya Vzryva 43(3), 9–14 (2007) [Combust., Expl., Shock Waves 43 (3), 253–257 (2007)].

    Google Scholar 

  24. D. A. Knyazkov, V. M. Schwartzberg, A. G. Shmakov, and O. P. Korobeinichev, “Influence of Organophosphorus Inhibitors on the Structure of Atmospheric Lean and Rich Methane-Oxygen Flames,” Fiz. Goreniya Vzryva 43(2), 23–31 (2007) [Combust., Expl., Shock Waves 43 (2), 143–151 (2007)].

    Google Scholar 

  25. R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, “PREMIX: A Fortran Program for Modeling Laminar One-Dimensional Premixed Flames,” Sandia National Laboratories Report No. SAND85-8240 (1985).

    Google Scholar 

  26. R. J. Kee, F. M. Rupley, and J. A. Miller, “CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics,” Sandia National Laboratories Report No. SAND 89-8009B (1989).

    Google Scholar 

  27. K. J. Bosschaart, L. P. H. de Goey, “The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured with the Heat Flux Method,” Combust. Flame 136, 261–269 (2004).

    Article  Google Scholar 

  28. I. V. Dyakov et al., “Measurement of Adiabatic Burning Velocity in Methane-Oxygen-Nitrogen Mixtures,” Combust. Sci. Technol. 172, 79–94 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Korobeinichev.

Additional information

Original Russian Text © O.P. Korobeinichev, T.A. Bolshova, A.G. Shmakov, V.M. Shvartsberg.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 50, No. 2, pp. 9–13, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobeinichev, O.P., Bolshova, T.A., Shmakov, A.G. et al. Skeletal mechanism of inhibition and suppression of a methane-air flame by addition of trimethyl phosphate. Combust Explos Shock Waves 50, 130–134 (2014). https://doi.org/10.1134/S0010508214020026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214020026

Keywords

Navigation