Skip to main content

Wave regimes of dust combustion


Experimental studies were performed to investigate the dependence of the laminar flame velocity in dust clouds of Al, Mg, Zr, Fe, and B particles on the physicochemical parameters (fuel concentration and composition, particle size distribution) and hydrodynamic conditions of the combustion process (semi-open tubes, free clouds of particle-air mixtures). Heat conduction was found to make a predominant contribution to the overall heat transfer in the combustion wave. The main causes of instability of laminar flames (acoustic disturbances, interfacial exchange, forced and natural convections), transient phenomena, and vibrational and turbulent combustion of dust were studied experimentally.

This is a preview of subscription content, access via your institution.


  1. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980; Plenum, New York, 1985).

    Google Scholar 

  2. A. N. Zolotko, Ya. I. Vovchuk, V. G. Shevchuk, and N. I. Poletaev, “Ignition and Combustion of Dust-Gas Suspensions,” Fiz. Goreniya Vzryva 41(6), 3–14 (2005) [Combust., Expl., Shock Waves 41 (6), 611–621 (2005)].

    Google Scholar 

  3. A. E. Medvedev, A. V. Fedorov, V. M. Fomin, “Description of Ignition and Combustion of Gas Mixtures with Solid Particles by Methods of the Mechanics of Continuous Media,” Fiz. Goreniya Vzryva 20(2), 3–9 (1984) [Combust., Expl., Shock Waves 20 (2), 127–133 (1984)].

    Google Scholar 

  4. J. I. Vovchuk and N. I. Poletaev, “The Temperature Field of a Laminar Diffusion Dust Flame,” Combust. Flame 99, 706–772 (1994).

    Article  Google Scholar 

  5. H. M. Cassel, “Some Fundamental Aspects of Dust Flames,” Rep. Inv. 6551 (US Bureau of Mines) (1964), pp. 1–51.

    Google Scholar 

  6. H. M. Cassel, A. K. Das Gupta, and I. Guruswamy, “Factors Affecting Flame Propagation through Dust Clouds,” in Third Symp. on Combustion, Baltimore, 1949, pp. 185–190.

  7. N. D. Ageev, S. V. Goroshin, J. I. Vovchuk, N. I. Poletaev, and Yr. L. Shoshin, “The Premixed Aluminium Dust Laminar Flame Structure,” in Flame Structure (Nauka, Novosibirsk, 1991), Vol. 1, pp. 213–218 [in Russia].

    Google Scholar 

  8. I. G. Shevchuk, A. K. Bezrodnykh, L. V. Boichuk, and E. N. Kondrat’ev, “Laminar Flame Mechanism in Air Suspensions of Metal Particles,” Fiz. Goreniya Vzryva 24(2), 85–89 (1988) [Combust., Expl., Shock Waves 24 (2), 201–205 (1988)].

    Google Scholar 

  9. D. R. Ballal, “Flame Propagation Through Dust Clouds of Carbon, Coal, Aluminium in an Environment of Zero Gravity,” Proc. Roy Soc. London A385, 21–51 (1983).

    Article  ADS  Google Scholar 

  10. R. K. Eckhoff, Dust Explosions in Processes Industries (Butterworth-Heinemann, 1997).

    Google Scholar 

  11. V. G. Shevchuk, S. V. Gorokhov, L. A. Klyachko, N. D. Ageev, E. N. Kondrat’ev, A. N. Zolotko, “Flame Propagation Rate in Gaseous Suspensions of Magnesium Particles,” Fiz. Goreniya Vzryva 6(1), 57–63 (1980) [Combust., Expl., Shock Waves 6 (1), 52–58 (1980)].

    Google Scholar 

  12. A. E. Sidorov and V. G. Shevchuk, “Laminar Flame in Fine Particle Dusts,” Fiz. Goreniya Vzryva 47(5), 24–28 (2011) [Combust., Expl., Shock Waves 47 (5), 518–522 (2011)].

    Google Scholar 

  13. A. E. Sidorov, E. N. Kondrat’ev, L. V. Boichuk, and V. G. Shevchuk, “Combustion of Aluminum Dust at High Concentrations of Fuel,” Gorenie Plasmokhim. 3(3), 221–226 (2005).

    Google Scholar 

  14. B.-Q. Lin, W.-X. Li, Ch.-J. Zhu, H.-L. Lu, Zh.-G. Lu, and Q.-Zh. Li, “Experimental Investigation on Explosion Characteristics of Nano-Aluminum Powder-Air Mixtures,” Fiz. Goreniya Vzryva 46(6), 73–77 (2010) [Combust., Expl., Shock Waves 46 (6), 678–682 (2010)].

    Google Scholar 

  15. Yu. N. Kostyshin and V. G. Shevchuk, “On Concentration Instability of Laminar Flame in Tubes,” in Physics of Aerodispersed Systems (Vishcha Shkola, Kiev, Odessa, 1997), No. 36, pp. 159–169.

    Google Scholar 

  16. A. E. Sidorov, E. N. Kondrat’ev, L. V. Boichuk, and V. G. Shevchuk, “Effect of Particle Shape on Dust Combustion,” in Physics of Aerodispersed Systems (Astroprint, Odessa, 2004), No. 41, pp. 223–228.

    Google Scholar 

  17. S. V. Goroshin, V. G. Shevchuk, and N. D. Ageev, “Oscillatory Combustion of Gaseous Suspensions,” Fiz. Goreniya Vzryva 17(6), 15–21 (1981) [Combust., Expl., Shock Waves 17 (6), 595–600 (1981)].

    Google Scholar 

  18. S. K. Aslanov, V. G. Shevchuk, Yu. N. Kostyshin, L. V. Boichuk, S. V. Goroshin, “Oscillatory Combustion of Air Suspensions,” Fiz. Goreniya Vzryva 29(2), 36–43 (1993) [Combust., Expl., Shock Waves 29 (2), 163–169 (1993)].

    Google Scholar 

  19. V. G. Shevchuk, E. N. Kondrat’ev, L. V. Boichuk, and A. N. Zolotko, “High-Velocity Wave Combustion Regimes of an Aerocolloidal Mixtures in Open-Closed Tubes,” Fiz. Goreniya Vzryva 22(2), 40–45 (1986) [Combust., Expl., Shock Waves 22 (2), 164–168 (1986)].

    Google Scholar 

  20. V. G. Shevchuk, A. K. Bezrodnykh, E. N. Kondrat’ev, et al., “Combustion of Aluminum Particles in the Void Volume,” Fiz. Goreniya Vzryva 22(5), 40–43 (1986) [Combust., Expl., Shock Waves 22 (5), 531–534 (1986)].

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. G. Shevchuk.

Additional information

Original Russian Text © V.G. Shevchuk, E.N. Kondrats’ev, A.N. Zolotko, A.E. Sidorov, A.S. Oparin.


Translated from Fizika Goreniya i Vzryva, Vol. 50, No. 1, pp. 90–96, January–February, 2014.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shevchuk, V.G., Kondrat’ev, E.N., Zolotko, A.N. et al. Wave regimes of dust combustion. Combust Explos Shock Waves 50, 80–86 (2014).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • dust
  • flame spread
  • laminar
  • turbulent
  • oscillatory regime
  • instability