Skip to main content
Log in

Equation of state of polytetrafluoroethylene for calculating shock compression parameters at megabar pressures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Semi-empirical equations of state (thermal and caloric) are obtained to calculate not only the kinematic parameters (shock wave velocity, particle velocity, and reverberation of waves) but also the thermodynamic parameters (temperature, pressure, and compression) of monolithic and porous polytetrafluoroethylene at high shock pressures. The equations of state are used to model wave interaction in shock-wave experiments using the developed hydrocode. The equations are verified by comparison simulation results with published results of experiments and the data of our shock compression tests of solid and porous samples of PTFE in the range of 10–170 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. C. Vantine, L. M. Erickson, and J. A. Janzen, “Hysteresis-Corrected Calibration of Manganin under Shock Loading,” J. Appl. Phys. 51, 1957–1962 (1980).

    Article  ADS  Google Scholar 

  2. S. A. Bordzilovskii and S. M. Karakhanov, “Electrical Insulating Properties of Fluoroplastic Interlayers under Dynamic Compression,” Fiz. Goreniya Vzryva 26(4), 124–129 (1990) [Combust., Expl., Shock Waves 26 (4), 485–489 (1990)].

    Google Scholar 

  3. V. I. Tarzhanov, Yu. N. Zhugin, and K. K. Krupnikov, “Electrical Conductivity of Polytetrafluoroethylene under ShockWave Loading and Rarefaction,” Prikl. Mekh. Tekh. Fiz. 38(6), 16–22 (1997) [J. Appl. Mech. Tekh. Phys. 38 (6), 826–832 (1997)].

    MATH  Google Scholar 

  4. S. A. Bordzilovskii and S. M. Karakhanov, “Electric Resistance of Polytetrafluoroethylene under Shock Compression,” Fiz. Goreniya Vzryva 38(6), 127–133 (2002) [Combust., Expl., Shock Waves 38 (6), 722–727 (2002)].

    Google Scholar 

  5. A. V. Bushman, M. V. Zhernokletov, I. V. Lomonosov, Yu. N. Sutulov, V. E. Fortov, and K. V. Khishchenko, “Plexiglas and Teflon in Waves of Reshock Compression and Isentropic Unloading: The Equation of State of Polymers at High Energy Density,” Dokl. Akad. Nauk 329(5), 581–584 (1993).

    Google Scholar 

  6. S. A. Bordzilovskii, S. M. Karakhanov, and D. S. Bordzilovskii, “Using an Optical Pyrometer for Temperature Measurements of Shock Compression of Fluoroplastic,” Fiz. Goreniya Vzryva 46(1), 93–101 (2010) [Combust., Expl., Shock Waves 46 (1), 81–88 (2010)].

    Google Scholar 

  7. A. R. Champion, “Shock Compression of Teflon from 2.5 to 25 kbars.-Evidense for a Shock-Induced Transition,” J. Appl. Phys. 42(13), 5546–5550 (1971).

    Article  ADS  Google Scholar 

  8. LASL Shock Hugoniot Data, Ed. by S. P. Marsh (Univ. California Press, Berkeley, 1980).

    Google Scholar 

  9. N. G. Kalashnikov, L. V. Kuleshov, and M. N. Pavlovskii, “Shock Compression of Polytetrafluoroethylene at Pressures up to ∼1.7 mbar,” Prikl. Mekh. Tekh. Fiz., No. 4, 187–191 (1972).

    Google Scholar 

  10. Compendium of Shock Wave Data, Ed. by M. van Thiel (Univ. California, Livermor, 1977).

    Google Scholar 

  11. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  12. D. D. Chegodaev, Z. K. Naumova, and Ts. S. Dunaevskaya, Fluoroplastics (Hydrochemical Inst., Leningrad, 1960) [in Russian].

    Google Scholar 

  13. C. E. Morris, J. N. Fritz, and R. G. McQueen, “Equation of State of Polytetrafluoroethylene to 80 GPa,” J. Chem. Phys. 80(10), 5203–5218 (1984).

    Article  ADS  Google Scholar 

  14. B. M. Tamayama, T. N. Andersen, and H. Eyring, “The Melting and Pyrolysis of Teflon and the Melting of Silver Chloride and Iodine under High Pressure,” Proc. Natl. Acad. Sci. 57, 554–561 (1967).

    Article  ADS  Google Scholar 

  15. A. M. Molodets, “Thermodynamic Potentials and Non-Monotonic Melting Curve of Sodium at High Pressure,” High Pressure Res. 30(2), 325–331 (2010).

    Article  ADS  Google Scholar 

  16. A. M. Molodets, “The Equation of State of Solid Chemical Elements,” Dokl. Akad. Nauk 353(5), 610–612 (1997).

    Google Scholar 

  17. V. V. Kim, “Numerical Simulation of Gas-Dynamic Processes at High Energy Densities using a Modified Method of Individual Particles,” Candidate Dissertation in Phys.-Math. Sci. (Chernogolovka, 2005).

    Google Scholar 

  18. V. E. Fortov, V. V. Kim, I. V. Lomonosov, A. V. Matveichev, and A. V. Ostric, “Numerical Modeling of Hypervelocity Impacts,” Int. J. Impact Eng. 33, 244–253 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Molodets.

Additional information

Original Russian Text © A.M. Molodets, D.V. Shakhrai, A.S. Savinykh, A.A. Golyshev, V.V. Kim.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 49, No. 6, pp. 121–129, November–December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molodets, A.M., Shakhrai, D.V., Savinykh, A.S. et al. Equation of state of polytetrafluoroethylene for calculating shock compression parameters at megabar pressures. Combust Explos Shock Waves 49, 731–738 (2013). https://doi.org/10.1134/S0010508213060130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508213060130

Keywords

Navigation