Skip to main content
Log in

Detonation parameters of pressed charges of benzotrifuroxane

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The brightness temperature and pressure profiles of the detonation products of pressed charges of benzotrifuroxane were determined by a pyrometric method, and the heat of explosion and propellant performance were experimentally determined. The temperature of the detonation products (4100±150 K) was significantly lower than the calculated values reported in most theoretical papers. Compared to HMX, benzotrifuroxane has a higher heat of explosion but lower expansion velocity of the shell (T-20) method and Gurney energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Energetic Condensed Systems: A Brief Encyclopedia, Ed. by B. P. Zhukov (Yanus-K, Moscow, 2000) [in Russian].

    Google Scholar 

  2. V. I. Pepekin, M. N. Makhov, and Yu. A. Lebedev, “Heat the Explosive Decomposition of Individual Explosives,” Dokl. Akad. Nauk SSSR 232(4), 852–855 (1977).

    Google Scholar 

  3. B. M. Dobratz, “LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants, Report No. UCRL-52997 (Lawrence Livermore Laboratory, March, 1981).

    Google Scholar 

  4. L. E. Fried and P. C. Souers, “BKWC: An Empirical BKW Parametrization Based on Cylinder Test Data, Propellants, Explosives, Pyrotechnics 21(4), 215–223 (1966).

    Google Scholar 

  5. A. P. Ershov, “Explosion,” Soros. Obraz. Zh. 6(1), 85–90 (2000).

    Google Scholar 

  6. M. Finger, E. Lee, F. H. Helm, et al., “The Effect of Elemental Composition on the Detonation Behavior of Explosives,” in Proc. Sixth Symp. (Int.) on Detonation, ACR-221 (Coronado, California, 1976), pp. 710–722.

    Google Scholar 

  7. S. B. Viktorov, S. A. Gubin, and I. V. Maklashova, “Prediction of Detonation Properties of a CNO Composition Based on the Properties of Ultrafine Carbon,” in Physics of Extreme States of Matter 2002, Ed. by V. E. Fortov, V. P. Efremov, K. V. Khishchenko, et al. (Inst. of Problems of Chemical Physics, RAS, Chernogolovka, 2002), pp. 88–90 [in Russian].

    Google Scholar 

  8. B. P. Tolochko, V. M. Titov, A. P. Chernyshev, et al., Physicochemical Model of Detonation Synthesis of Nanodiamonds (Budker Inst. of Nuclear Phys., SB RAS, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  9. I. S. Tselinskii, “Use of Energetic Materials in Technology and Industry,” Soros. Obraz. Zh. 3(11), 46–52 (1997).

    Google Scholar 

  10. A. A. Kotomin, S. A. Dushenok, V. V. Efanov, et al., “Critical Detonation Diameter of Explosive Materials used in Separation Systems of Spacecraft,” Vestn. FGUP NPO Lavochkina, No. 1, 24–31 (2010).

    Google Scholar 

  11. V. M. Titov, V. F. Anisichkin, and I. Yu. Mal’kov, “Synthesis of Ultradispersed Diamond in Detonation Waves,” Fiz. Goreniya Vzryva 35(3), 117–126 (1989) [Combust., Expl., Shock Waves 35 (3), 372–379 (1989)].

    Google Scholar 

  12. V. F. Anisichkin, D. S. Dolgushin, and E. A. Petrov, “The Effect of Temperature on the Growth of Ultrafine Diamonds in the Front DV,” Fiz. Goreniya Vzryva 31 (1), 109–112 (1995) [Combust., Expl., Shock Waves 31 (1), 106–109 (1005)].

    Google Scholar 

  13. D. L. Ornellas, “the Heat and Products of Detonation in a Calorimeter of CNO, HNO, CHNF, CHNO, CHNOF, and CHNOSi Explosives,” Combust. Flame 23(1), 37–46 (1974).

    Article  Google Scholar 

  14. M. J. Kamlet, J. M. Short, M. Finger, et al., “The Chemistry of Detonations. VIII. Energetic Relationships on the Detonation Isentrope,” Combust. Flame, No. 3, 325–333 (1983).

    Google Scholar 

  15. M. F. Gogulya and M. A. Brazhnikov, “Temperatures of the Detonation Products of Condensed Explosives. I. Solid Explosives,” Khim. Fiz. 13(1), 52–63 (1994).

    Google Scholar 

  16. M. F. Gogulya and A. Yu. Dolgoborodov, “Indicator Method of Studying Shock and Detonation Waves,” Khim. Fiz. 13(12), 118–127 (1994).

    Google Scholar 

  17. M. N. Makhov, “Determination of the Energy Content of Individual Explosives,” Khim. Fiz. 19(6), 52–56 (2000).

    Google Scholar 

  18. M. N. Makhov, “Determination of the Heat of Explosion of Aluminized Explosives,” in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2011), Vol. 4, pp. 307–312 [in Russian].

    Google Scholar 

  19. Physics of Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].

    Google Scholar 

  20. Methods of Studying the Properties of Materials under Intense Dynamic Loading, Ed. by M. V. Zhernokletov (VNIIEF, Sarov, 2003) [in Russian].

    Google Scholar 

  21. D. R. Hardesty and J. E. Kennedy, “Thermochemical Estimation of Explosive Energy Uutput,” Combust. Flame 28(1), 45–49 (1977).

    Article  Google Scholar 

  22. H. Hornberg, “Determination of Fume State Parameters from Expansion Measurements of Metal Tubes,” Propellants, Explosives, Pyrotechnics 11(1), 23–31 (1986).

    Article  Google Scholar 

  23. M. F. Gogulya, A. Yu. Dolgoborodov, M. A. Brazhnikov, et al., “Detonation Waves in HMX/Al Mixtures (Pressure and Temperature Measurements),” in Proc. Eleventh Symp. (Int.) on Detonation, ONR 33300-5 (Snowmass, Colorado, 1998), pp. 979–988.

    Google Scholar 

  24. M. F. Gogulya, A. Yu. Dolgoborodov, M. N. Makhov, et al., “Detonation Performance of Aluminized Compositions Based on BTNEN,” in Proc. Twelfth Symp. (Int.) on Detonation, ONR 333-5-2 (San Diego, California, 2002), pp. 249–255.

    Google Scholar 

  25. http://teos.ficp.ac.ru/rusbank/.

  26. V. M. Titov, K. A. Ten, E. R. Pruuel, B. P. Tolochko, “Synchrotron Diagnostics of Explosive Processes,” in Extreme States of Matter. Detonation. Shock Waves, Ed. by A. L. Mikhailov (VNIIEF, Sarov, 2011) [in Russian].

    Google Scholar 

  27. M. N. Makhov and V. I. Pepekin, “Calculation of Chemical Composition of Detonation Products,” Polish J. Chem. 55(6), 1381–1385 (1981).

    Google Scholar 

  28. M. N. Makhov, “The Effect of Charge Density on the Explosion Heat of High Explosives,” in Proc. 33rd Int. Annu. Conf. ICT (Karlsruhe, FRG, 2002), pp. 73/1–73/13.

    Google Scholar 

  29. J.-F. Danel and L. Kazandjian, “A Few Remarks about the Gurney Energy of Condensed Explosives,” Propellants, Explosives, Pyrotechnics 29(5), 314–316 (2004).

    Article  Google Scholar 

  30. V. I. Pepekin and S. A. Gubin, “Propellant Performance of Organic Explosives and Their Energy Output and Detonation Velocity Limits,” Fiz. Goreniya Vzryva 42(1), 99–111 (2007) [Combust., Expl., Shock Waves 42 (1), 84–95 (2007)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Dolgoborodov.

Additional information

Original Russian Text © A.Yu. Dolgoborodov, M.A. Brajnikov, M.N. Makhov, N.E. Safronov, V.G. Kirilenko.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 49, No. 6, pp. 112–120, November–December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgoborodov, A.Y., Brajnikov, M.A., Makhov, M.N. et al. Detonation parameters of pressed charges of benzotrifuroxane. Combust Explos Shock Waves 49, 723–730 (2013). https://doi.org/10.1134/S0010508213060129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508213060129

Keywords

Navigation