Skip to main content
Log in

On mechanisms of formation of environmentally harmful compounds in homogeneous combustors

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A kinetic model is developed for calculating the emission characteristics of homogeneous combustors using methane and synthesis gas (syngas) as a fuel. The model is validated over a large set of experimental data on concentrations of NO, CO, and OH in laminar flames and in the Bunsen burner and on concentrations of OH, NO, and CO in a homogeneous combustor operating on a mixture of syngas with air. At an identical temperature of combustion products, i.e., identical thermodynamic efficiency, the combustor operating on syngas is demonstrated to emit a greater amount of NO, CO, and CO2, as compared with the combustor operating on methane. Though the use of syngas allows one to organize stable combustion of ultralean mixtures and to obtain extremely low concentrations of NO and CO at the combustor exit (≈1–3 ppm), the amount of CO2 in the exhaust of even extremely lean mixtures (α ≈ 3) is appreciably greater than that in the case of using methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Warnatz, U. Maas, amd R. W. Dibble, Combustion. Physical and Chemical Fundamentals, Modeling and Simulations, Experiments, Pollutant Formation (Springer, Berlin, 2001).

    Google Scholar 

  2. T. S. Cheng, Y.-C. Chao, D.-C. Wu, et al., “Effects of Fuel-Air Mixing on Flame Structures and NOx Emissions in Swirling Methane Jet Flames,” in 27th Symp. (Int.) on Combustion (The Combus. Inst., 1998), pp. 1229–1237.

    Google Scholar 

  3. T. S. Cheng, Y.-C. Chao, D.-C. Wu, et al., “Effects of Partial Premixing on Pollutant Emissions in Swirling Methane Jet Flames,” Combust. Flame 125, 865–878 (2001).

    Article  Google Scholar 

  4. G. J. Rortveit, K. Zepter, O. Skreiberg, et al., “A Comparison of Low-NOx Burners for Combustion of Methane and Hydrogen Mixtures,” Proc. Combust. Inst. 29, 1123–1129 (2002).

    Article  Google Scholar 

  5. R. W. Schefer, D. M. Wicksall, and A. K. Agrawal, “Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner,” Proc. Combust. Inst. 29, 843–851 (2002).

    Article  Google Scholar 

  6. J.-Y. Ren, F. N. Egolfopoulos, and T. T. Tsotsis, “NOx Emission Control of Lean Methane-Air Combustion with Addition of Methane Reforming Products,” Combust. Sci. Technol. 174(4), 181–205 (2002).

    Article  Google Scholar 

  7. D. Zhao, H. Yamashita, K. Kitagawa, N. Arai, and T. Furuhata, “Behavior and Effect on NOx Formation of OH Radical in Methane-Air Diffusion Flame with Steam Addition,” Combust. Flame 130, 352–360 (2002).

    Article  Google Scholar 

  8. A. F. Ghoniem, A. Annaswamy, S. Park, and Z. C. Sobhani, “Stability and Emissions Control Using Air Injection and H2 Addition in Premixed Combustion,” Proc. Combust. Inst. 30, 1765–1773 (2005).

    Article  Google Scholar 

  9. H. Guo, G. J. Smallwood, F. Liu, Y. Ju, and O. L. Gulder, “The Effect of Hydrogen Addition on Flammability Limit and NOx Emission in Ultra-Lean Counterflow CH4/Air Premixed Flames,” Proc. Combust. Inst. 30, 303–311 (2005).

    Article  Google Scholar 

  10. N. Aida, T. Nishijima, S. Hayashi, H. Yamada, and T. Kawakami, “Combustion of Lean Prevaporized Fuel-Air Mixtures Mixed with Hot Burned Gas for Low-NOx Emissions over an Extended Range of Fuel-Air Ratios,” Proc. Combust. Inst. 30, 2885–2892 (2005).

    Article  Google Scholar 

  11. L. P. Rangel, L. M. Fletcher, M. Pourkashanian, and A. Williams, “Fundamental Studies of a Partial Premixed Counter-Flow Combustion System and its Effect on NOx Emissions,” Combust. Sci. Technol. 178(8), 1457–1476 (2006).

    Article  Google Scholar 

  12. M. J. Landman, M. A. F. Derksen, and J. B. W. Kok, “Effect of Combustion Air Dilution by Water Vapor or Nitrogen on NOx Emission in a Premixed Turbulent Natural Gas Flame: An Experimental Study,” Combust. Sci. Technol. 178(4), 623–634 (2006).

    Article  Google Scholar 

  13. A. M. Briones, S. Som, and S. Aggarwal, “Effect of Multistage Combustion on NOx Emissions in Methane-Air Flames,” Combust. Flame 149, 448–462 (2007).

    Article  Google Scholar 

  14. H. Xue and S. K. Aggarwal, “NOx Emissions in n-Heptane/Air Partially Premixed Flames,” Combust. Flame 132, 723–741 (2003).

    Article  Google Scholar 

  15. L. K. Sze, C. S. Cheung, and C. W. Leung, “Appearance, Temperature, and NOx Emission of Two Increase Diffusion Flames with Different Port Design,” Combust. Flame 144, 237–248 (2006).

    Article  Google Scholar 

  16. S. Naha and S. K. Aggarwal, “Fuel Effects on NOx Emissions in Partially Premixed Flames,” Combust. Flame 139, 90–105 (2004).

    Article  Google Scholar 

  17. M. S. Day, J. B. Bell, X. Gao, and P. Glarborg, “Numerical Simulation of Nitrogen Oxide Formation in Lean Premixed Turbulent H2/O2/N2 Flames,” Proc. Combust. Inst., 33, 1591–1599 (2011).

    Article  Google Scholar 

  18. H. Watanabe, J. Yamamoto, and K. Okazaki, “NOx Formation and Reduction Mechanisms in Staged O2/CO2 Combustion,” Combust. Flame 158, 1255–1263 (2011).

    Article  Google Scholar 

  19. F. Biagioli and F. Güthe, “Effect of Pressure and Fuel-Air Unmixedness on NOx Emissions from Industrial Gas Turbine Burners,” Combust. Flame 151, 274–288 (2007).

    Article  Google Scholar 

  20. P. Griebel, R. Bombach, A. Inauen, et al., “Flame Characteristics and Turbulent Flame Speeds of Turbulent, High-Pressure, Lean Premixed Methane/Air Flames,” in Proc. of ASME Turbo Expo 2005: Power for Land, Sea, and Air (Reno-Tahoe, Nevada, USA, GT2005-68565, 2005).

    Google Scholar 

  21. S. K. Vedeshkin and E. D. Sverdlov, “Organization of Low-Emission Burning of Gas in Gas-Turbine Plants,” Teploenergetika, No. 11, 10 (2005) [Thermal Eng. 52 (11), 838–848 (2005)].

    Google Scholar 

  22. A. Frassoldati, A. Cuaci, T. Faravelli, et al., “Experimental and Modeling Study of a Low NOx Combustor for Aero-Engine Turbofan,” Combust. Sci. Technol. 181(3), 483–495 (2009).

    Article  Google Scholar 

  23. S. Daniele, P. Jansohn, and K. Boulouchos, “Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control,” in Proc. of ASME Turbo Expo 2010: Power for Land, Sea and Air, June 14–18, 2010, Glasgow, UK, GT2010-23456.

  24. D. J. Wilhelm, D. R. Simbeck, A. D. Karp, and R. L. Dickenson, “Syngas Production for Gas-to-Liquids Applications: Technologies, Issues and Outlook,” Fuel Proces. Technol. 71, 139–148 (2001).

    Article  Google Scholar 

  25. M. Chaos and F. L. Dryer, “Syngas Combustion Kinetics and Applications,” Combust. Sci. Technol. 180(6), 1053–1096 (2008).

    Article  Google Scholar 

  26. M. Deminsky, V. Jivotov, B. Potapkin, and V. Rusanov, “Plasma-Assisted Production of Hydrogen from Hydrocarbons,” Pure Appl. Chem. 74(3), 413–418 (2002).

    Article  Google Scholar 

  27. A. E. Lutz, R.W. Bradshaw, L. Bromberg, and A. Rabinovich, “Thermodynamic Analysis of Hydrogen Production by Partial Oxidation Reforming,” Int. J. Hydrogen Energy 29(8), 809–816 (2004).

    Article  Google Scholar 

  28. A. Fridman and L. Kennedy, Plasma Physics and Engineering (Taylor and Francis, New York, 2004).

    Google Scholar 

  29. J. A. Miller and C. T. Bowman, “Mechanism and Modeling of Nitrogen Chemistry in Combustion,” Prog. Energy Combust. Sci. 15(4), 287–338 (1989).

    Article  Google Scholar 

  30. GRI-Mech 3.0 G. P. Smith, D. M. Golden, M. Frenklach, et al., GRI-Mech 3.0 (1999); www.me.berkeley.edu/grimech/version30/text30.html.

    Google Scholar 

  31. N. G. Dautov and A. M. Starik, “On the Problem of Choosing a Kinetic Scheme for the Homogeneous Reaction of Methane with Air,” Kinet. Katal. 38(2), 207–230 (1997) [Kinet. Catal. 38 (2), 185–208 (1997)].

    Google Scholar 

  32. A. A. Konnov, “Detailed Reaction Mechanism for Small Hydrocarbons Combustion. Release 0.5,” http://homepages.vub.ac.be/~akonnov/ (2000).

    Google Scholar 

  33. A. B. Lebedev, A. N. Secundov, A. M. Starik, et al., “Modeling Study of Gas-Turbine Combustor Emission,” Proc. Combust. Inst., 32(2), 2941–2947 (2009).

    Article  Google Scholar 

  34. V. E. Kozlov, A. B. Lebedev, A. N. Sekundov, et al., “Application of Reactor Models for Calculating Emission Characteristics of Diffusion and Homogeneous Combustors,” in Environmental Problems of Aviation, Ed. by Yu. D. Khaletskii (Torus Press, Moscow, 2010), pp. 321–338 [in Russian].

    Google Scholar 

  35. C. P. Fenimore, “Formation of Nitric Oxide in Premixed Hydrocarbon Flames,” in 13th Symp. (Int.) on Combustion (The Combustion Inst., 1971), pp. 373–379.

    Google Scholar 

  36. P. C. Matle and D. T. Pratt, “Measurement of Atomic Oxygen and Nitrogen Oxides in Jet-Stirred Combustion,” in 15th Symp. (Int.) on Combustion (The Combustion Inst., 1975), pp. 1061–1070.

    Google Scholar 

  37. A. M. Starik, V. E. Kozlov, and N. S. Titova, “On the Influence of Singlet Oxygen Molecules on the Speed of Flame Propagation in Methane-Air Mixture,” Combust. Flame 157(2), 313–327 (2010).

    Article  Google Scholar 

  38. A. M. Starik, N. S. Titova, A. S. Sharipov, and V. E. Kozlov, “Syngas Oxidation Mechanism,” Fiz. Goreniya Vzryva 46(5), 3–19 (2010) [Combust., Expl., Shock Waves 46 (5), 491–506 (2010)].

    Google Scholar 

  39. P. S. Kuleshov, A. M. Starik, and N. S. Titova, “Kinetics of Oxidation and Combustion of Methane and Propane,” in Nonequilibrium Physicochemical Processes in Gas Flows and Novel Concepts of Combustion, Ed. by A. M. Starik (Torus Press, Moscow, 2011), pp. 53–87 [in Russian].

    Google Scholar 

  40. A. Fernandez, A. Goumri, and A. Fontijn, “Kinetics of the Reactions of N(4S) Atoms with O2 and CO2 over Wide Temperatures Ranges,” J. Phys. Chem. A 102(1), 168–172 (1998).

    Article  Google Scholar 

  41. W. Hack, K. Hoyermann, and H. G. Wagner, “The Reaction of NO + HO2 NO2 + OH with OH + H2O2 HO2 + H2O as an HO2-Source,” Int. J. Chem. Kinet. 7, 329 (1975).

    Google Scholar 

  42. W. Tsang and J. T. Herron, “Chemical Kinetic Data Base for Propellant Combustion. I. Reactions Involving NO, NO2, HNO, HNO2, HCN and N2 O,” J. Phys. Chem. Ref. Data 20(4), 609–663 (1991).

    Article  ADS  Google Scholar 

  43. I. V. Zaslonko, A. M. Tereza, O. N. Kulish, and D. Yu. Zheldakov, “Kinetic Aspects of Reduction of the Nitrogen Oxide Level in Combustion Products by Addition of Ammonia (De-NOx), Khim. Fiz. 11(11), 1491–1517 (1992).

    Google Scholar 

  44. M. V. Bochkov, L. A. Lovachev, and B. N. Chetverushkin, “Chemical Kinetics of NOx Formation during Methane Combustion in Air,” Mat. Model. 4(9), 3–36 (1992).

    MathSciNet  Google Scholar 

  45. M. V. Kantak, K. S. de Manrique, R. H. Aglave, and R. P. Hesketh, “Methylamine Oxidation in a Flow Reactor: Mechanism and Modeling,” Combust. Flame 108, 235–265 (1997).

    Article  Google Scholar 

  46. G. Weibring and R. Zellner, “Chemistry in Plumes of High-Flying Aircraft with H2 Combustion Engines: A Modeling Study,” Ann. Geophys. 12(5), 403–408 (1994).

    ADS  Google Scholar 

  47. M.W. Slack and A. R. Grillo, “Shock Tube Investigation of Methane-Oxygen Ignition Sensitized by NO2,” Combust. Flame 40, 155–172 (1981).

    Article  Google Scholar 

  48. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances: Reference Book, Ed. by V. P. Glushko (Nauka, Moscow, 1978).

  49. E. Goos, A. Burcat, and B. Ruscic, “Ideal Gas Thermochemical Database with Updates from Active Thermochemical Tables,” ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics; www.garfield.chem.elte.hu/Burcat/burcat.html;date.

  50. A. A. Konnov, I. V. Dyakov, and J. de Ruyck, “Probe Sampling Measurements and Modeling Nitric Oxide Formation in Methane-Air Flames,” Combust. Sci. Technol. 169(1), 127–153 (2001).

    Article  Google Scholar 

  51. Q. V. Nguyen, R. W. Dibble, C. D. Carter, et al., “Raman-LIF Measurements of Temperature, Major Species, OH and NO in a Methane-Air Bunzen Flame,” Combust. Flame 105, 499–510 (1996).

    Article  Google Scholar 

  52. A. Van Maaren and L. P. H. de Goey, “Laser Doppler Thermometry in Flat Flames,” Combust. Sci. Technol. 99(1), 105–118 (1994).

    Article  Google Scholar 

  53. R. J. Kee, F. M. Rupley, J. A. Miller, et al., CHEMKIN, Release 4.0 (Reaction Design, San Diego, 2004).

    Google Scholar 

  54. ANSYS FLUENT User’s Guide, Version 12 (ANSYS Inc., January 2009).

  55. C. T. Bowman et al., “GRI-Mech 2.11,” http://www.me.berkeley.edu/~grimech/new21/version21/text21.html.

  56. E. Giacomazzi, D. Cecerel, F. Donato, et al., “LES Analysis of a Syngas Turbulent Premixed Dump-Combustor at 5 Bar,” in Int. Conf. on Processes and Technologies for a Sustainable Energy, Ischia, June 27–30, 2010.

  57. B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence (Academic Press, London, 1972).

    MATH  Google Scholar 

  58. B. F. Magnussen, “On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow,” in 19th AIAA Meeting (St. Louis, 1981).

    Google Scholar 

  59. I. R. Gran and B. F. Magnussen, “A Numerical Study of a Bluff-Body Stabilized Diffusion Flame. Part 2. Influence of Combustion Modeling and Finite-Rate Chemistry,” Combust. Sci. Technol. 119(1), 191–217 (1996).

    Article  Google Scholar 

  60. A. Habibi, B. Merci, and G. J. Heynderickx, “Multiscale Modeling of Turbulent Combustion and NOx Emission in Steam Crackers,” AIChE J. 53(9), 2384–2398 (2007).

    Article  Google Scholar 

  61. A. De Pascale, M. Fussi, and A. Peretto, “Numerical Simulation of Biomass Derived Syngas Combustion in a Swirl Flame Combustor,” in Proc. of ASME Turbo Expo 2010: Power for Land, Sea and Air, June 14–18, 2010, Glasgow, UK, GT2010-22791.

  62. Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and Numerical Comparison of Extractive and In Situ Laser Measurements of Non-Equilibrium Carbon Monoxide in Lean-Premixed Natural Gas Combustion,” Combust. Flame 100, 395–406 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Starik.

Additional information

Original Russian Text © V.E. Kozlov, A.M. Starik, N.S. Titova, I.Yu. Vedishchev.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 49, No. 5, pp. 17–33, September–October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, V.E., Starik, A.M., Titova, N.S. et al. On mechanisms of formation of environmentally harmful compounds in homogeneous combustors. Combust Explos Shock Waves 49, 520–535 (2013). https://doi.org/10.1134/S0010508213050031

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508213050031

Keywords

Navigation