Combustion, Explosion, and Shock Waves

, Volume 49, Issue 4, pp 442–449 | Cite as

Complex modeling of melting of an aluminum nanoparticle

Article

Abstract

A semi-empirical model of molecular dynamics is proposed within the molecular dynamics approach. The model is verified against the experimental dependence of the melting temperature of aluminum nanoparticles on their size. The specific heat of the particle and the phase transition heat are determined as functions of the initial size and temperature of the particle. It is demonstrated that these dependences tend to the limiting dependences, which describe the particle size in the volume phase, as the particle size increases. A comparison of the aluminum nanoparticle melting characteristics calculated by the model of molecular dynamics and by the phenomenological model reveals reasonable agreement in terms of the melting time.

Keywords

molecular dynamics nanoparticles melting specific heat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Fedorov and A. V. Shulgin, “Mathematical Modeling of Melting of Nano-Sized Metal Particles,” Fiz. Goreniya Vzryva 47(2), 23–29 (2011) [Combust., Expl., Shock Waves 47 (2), 147–152 (2011)].Google Scholar
  2. 2.
    A. V. Fedorov and A. V. Shulgin, “Mathematical Modeling of Melting and Combustion of Metal Nanoparticles,” in Problems and Achievements of Applied Mathematics and Mechanics: Devoted to the 70th Anniversary of Academician V. M. Fomin, Collected Scientific Papers (Parallel, Novosibirsk, 2010) [in Russian], pp. 586–600.Google Scholar
  3. 3.
    A. V. Fedorov, V. M. Fomin, and A. V. Shulgin, “Physicomathematical Modeling of Combustion of Aluminum Nanoparticles near the End Face of a Shock Tube,” Dokl. Ross. Akad. Nauk 432(5), 616–619 (2010).MATHGoogle Scholar
  4. 4.
    A. V. Fedorov and A. V. Shulgin, “Point Model of Combustion of Aluminum Nanoparticles,” Fiz. Goreniya Vzryva 47(3), 47–51 (2011) [Combust., Expl., Shock Waves 47 (3), 280–288 (2011)].Google Scholar
  5. 5.
    P. Puri and V. Yang, “Effect of Particle Size on Melting of Aluminum at Nano Scales,” J. Phys. Chem. C 111(32), 11776–11783 (2007).CrossRefGoogle Scholar
  6. 6.
    H. C. Andersen, “Molecular Dynamics Simulations at Constant Pressure and/or Temperature,” J. Chem. Phys. 72(4), 2384–2393 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, 2004).MATHCrossRefGoogle Scholar
  8. 8.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1991).Google Scholar
  9. 9.
    F. Ercolessi, “A Molecular Dynamics Primer,” in Int. School for Advanced Studies (SISSA-ISAS) (Trieste, Italy, 1997).Google Scholar
  10. 10.
    F. Ercolessi and J. B. Adams, “Interatomic Potentials from First-Principles Calculations: The Force-Matching Method,” Europhys. Lett. 26(8), 583–588 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    M. S. Daw and M. I. Baskes, “Embedded-AtomMethod: Derivation and Application to Impurities and Other Defects in Metals,” Phys. Rev. B 29(12), 6443–6453 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-Atom-Method Functions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys,” Phys. Rev. B 33(12), 7983–7991 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    M. W. Finnis and J. E. Sinclair, “A Simple Empirical N-Body Potential for Transition Metals,” Philos. Mag. A 50(1), 45–55 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    A. P. Sutton and J. Chen, “Long-Range Finnis-Sinclair Potentials,” Philos. Mag. Lett. 61(1), 139–164 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    F. H. Streitz and J. W. Mintmire, “Electrostatic Potentials for Metal-Oxide Surfaces and Interfaces,” Phys. Rev. B 50(16), 11996–12003 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    J. D. Gezelter, E. Rabani, and B. J. Berne, “Can Imaginary Instantaneous Normal Mode Frequencies Predict Barriers to Self-Diffusion?” J. Chem. Phys. 107(12), 4618–4627 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    S. L. Lai, J. R. A. Carlsson, and L. H. Allen, “Melting Point Depression of Al Clusters Generated during the Early Stages of Film Growth: Nanocalorimetry Measurements,” Appl. Phys. Lett. 72(9), 1098–1100 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    A. P. Babichev et al., Physical Quantities: Reference Book (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  19. 19.
    V. N. Likhachev, T. Yu. Astakhova, G. A. Vinogradov, and M. I. Alymov, “Anomalous Specific Heat of Nanoparticles,” Khim. Fiz. 26(1), 89–93 (2007).Google Scholar
  20. 20.
    M. Forsblom and G. Grimvall, “Anharmonic Effects in the Heat Capacity of Al,” Phys. Rev. B 69, 165106 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations