Skip to main content
Log in

Shock-induced high-concentration nitrogen doping of titania

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

High-concentration nitrogen-doped titania is obtained by detonation-driven flyer impacting on mixtures of TiO2 and different nitrogen precursors. XRD, IR, and XPS spectra are employed to characterize the phase composition, surface absorption, and N-doping concentration of recovered samples. The N-doping concentration is affected by doping nitrogen resources, initial content of doping nitrogen resources, and flyer velocity. A high nitrogen concentration of 13.6 at.% is achieved by shock loading of the mixture of P25 TiO2 and 10 wt.% dicyandiamide (C2N4H4) at 3.37 km/s. A possible shock doping mechanism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. J. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238, 37–38 (1972).

    Article  ADS  Google Scholar 

  2. B. O’Regan and M. J. Gratzel, “A Low-Cost High Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Film,” Nature 353, 737–739 (1991).

    Article  ADS  Google Scholar 

  3. J. J. Liu, Y. C. Yu, et al., “Photocatalytic Activity of Shock-Treated TiO2 Powder,” Mater. Res. Bull. 35, 77–382 (2000).

    Google Scholar 

  4. T. Ohno, M. Akiyoshi, T. Umebayashi, et al., “Preparation of S-doped TiO2 Photocatalysts and Their Photocatalytic Activities under Visible Light,” Appl. Catal. A 265, 115–121 (2004).

    Article  Google Scholar 

  5. S. Liu S and X. J. Chen, “A Visible Light Response TiO2 Photocatalyst Realized by Cationic S-doping and Its Application for Phenol Degradation,” J. Hazard. Mater. 152, 48–55 (2008).

    Article  Google Scholar 

  6. S. Sato, R. Nakamura, and S. J. Abe, “Visible-Light Sensitization of TiO2 Photocatalysts by Wet-Method N Doping,” Appl. Catal. A 284, 131–137 (2005).

    Article  Google Scholar 

  7. S. Sakthivel, M. Janczarek, and H. K. Kisch, “Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2,” J. Phys. Chem. B 108, 19384–19387 (2004).

    Article  Google Scholar 

  8. V. Pore, M. Heikkila, M. Ritala, et al., “Atomic Layer Deposition of TiO2−x Nx Thin Films for Photocatalytic Application,” J. Photobiol. Photochem. A 177, 68–75 (2006).

    Article  Google Scholar 

  9. C. Chen, H. Bai, S. Chang, et al., “Photocatalyst by Atmospheric Pressure Plasma Process for VOCs Decomposition under UV and Visible Light Sources,” J. Nanopart. Res. 9, 365–375 (2007).

    Article  Google Scholar 

  10. R. Asashi, T. Morikawa, T. Ohwaki, et al., “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science 293, 269–271 (2001).

    Article  Google Scholar 

  11. C. Burda, Y. B. Lou, X. B. Chen, et al., “Enhanced Nitrogen Doping in TiO2 Nanoparticles,” Nano Lett. 3, 1049–1051 (2003).

    Article  ADS  Google Scholar 

  12. N. N. J. Thadhani, “Shock-Induced Chemical Reactions and Synthesis of Materials,” Prog. Mater. Sci. 37, 117–226 (1993).

    Article  Google Scholar 

  13. E. E. Lin, G. A. Dubitsski, T. V. Zyulkova, et al., “Feasibility of Doping of Ultradispersed Diamonds in a Detonation Wave,” Khim. Fiz. 16(3), 142–143 (1997).

    Google Scholar 

  14. V. Komanschek, A. Happ, and A. J. Pfeil, “Preparation of Doped Diamond by Detonation of Explosives,” Ger. Offen. DE 19933648 A1 20010118

  15. F. Q. Jing, Experimental State Equation Guidance (Science Press, Beijing, 1986).

    Google Scholar 

  16. R. G. McQueen, S. P. Marsh, J. W. Taylar, et al., High Velocity Impact Phenomena (Academic Press, New York, 1970).

    Google Scholar 

  17. J. J. Liu, T. Sekine, and T. J. Kobayashi. “A New Carbon Nitride Synthesized by Shock Compression of Organic Precursors,” Solid State Commun. 137, 21–25 (2006).

    Article  ADS  Google Scholar 

  18. C. Chen, H. Bai, and C. Chang, “Effect of Plasma Processing Gas Composition on the Nitrogen-Doping Status and Visible Light Photocatalysis of TiO2,” J. Phys. Chem. C 111(42), 15228–15235 (2007).

    Article  Google Scholar 

  19. J. A. Rengifo-Herrera, K. Pierzchała, A. Sienkiewicz, et al., “Abatement of Organics and Escherichia Coli by N, S co-doped TiO2 under UV and Visible Light. Implications of the Formation of Singlet Oxygen (1O2) under Visible Light,” Appl. Catal. B 88, 398–406 (2009).

    Article  Google Scholar 

  20. A. W. Weeber and H. J. Bakker, “Amorphization by Ball Milling—a Review,” Physica B 153, 93–135 (1988).

    Article  ADS  Google Scholar 

  21. X. X. Yang, C. D. Cao, L. Erickson, et al., “Photo-Catalytic Degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under Visible-Light Irradiation,” Appl. Catal. B 91, 657–662 (2009).

    Article  Google Scholar 

  22. R. Ren, Z. G. Yang, and L. L. J. Shaw, “Polymorphic Transformation and Powder Characteristics of TiO2 during High Energy Milling,” J. Mater. Sci. 35, 6015–6026 (2000).

    Article  Google Scholar 

  23. T. Arlt, M. Bermejo, M. A. Blanco, et al., “High-Pressure Polymorphs of Anatase TiO2,” Phys. Rev. B 61, 14414–14419 (2000).

    Article  ADS  Google Scholar 

  24. M. A. Meyers, Dynamic Behavior of Materials (J.Wiley, New York, 1994).

    Book  MATH  Google Scholar 

  25. J. K. Dewhurst and J. E. J. Lowther, “High-Pressure Structural Phases of Titanium Dioxide,” Phys. Rev. B 54, 3673–3675 (1996).

    Article  ADS  Google Scholar 

  26. R. K. Linde and P. S. Decarli, “Polymorphic Behavior of Titania under Dynamic Loading,” J. Chem. Phys. 50, 319–325 (1969).

    Article  ADS  Google Scholar 

  27. X. Gao, J. J. Liu, and P. W. J. Chen, “Nitrogen-Doped Titania Photocatalysts Induced by ShockWave,” Mater. Res. Bull. 44, 1842–1845 (2009).

    Article  Google Scholar 

  28. Y. Suda, H. Kawasaki, T. Ueda, and T. J. Ohshima, “Preparation of Nitrogen-Doped Titanium Oxide Thin Film using a PLD Method as Parameters of Target Material and Nitrogen Concentration Ratio in Nitrogen/Oxygen Gas Mixture,” Thin Solid Films 475, 337–341 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chen.

Additional information

Original Russian Text © P. Chen, X. Gao, J. Liu, Q. Zhou, F. Huang.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 48, No. 6, pp. 76–82, November–December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Gao, X., Liu, J. et al. Shock-induced high-concentration nitrogen doping of titania. Combust Explos Shock Waves 48, 724–729 (2012). https://doi.org/10.1134/S0010508212060111

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508212060111

Keywords

Navigation