Skip to main content
Log in

Effect of ethanol on the chemistry of formation of precursors of polyaromatic hydrocarbons in a fuel-rich ethylene flame at atmospheric pressure

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The effect of the addition of ethanol (EtOH) to the initial combustible mixture on the concentration of various compounds, in particular, those preceding the formation of polyaromatic hydrocarbons in a fuel-rich (equivalence ratio of fuel ϕ = 1.7) flat premixed ethylene/oxygen/argon flame at atmospheric pressure was studied experimentally and by numerical modeling using a detailed mechanism of chemical reactions. Concentrations of various stable and labile species, including reactants, major combustion products, and intermediates in C2H4/O2/Ar and C2H4/EtOH/O2/Ar flames were measured along the height above the burner using molecular beam mass spectrometry. Experimental mole fraction profiles were compared with those calculated using the previously proposed mechanisms of chemical reactions. This mechanism was analyzed to determine the cause of the ethanol effect on the flame concentration of propargyl, the main precursor of polyaromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kohse-Höinghaus, P. Oßwald, T. A. Cool, T. Kasper, N. Hansen, F. Qi, C. K. Westbrook, and P. R. Westmoreland, “Biofuel Combustion Chemistry: From Ethanol to Biodiesel,” Angew. Chemie Int. Ed. 49, 3572–3597 (2010).

    Article  Google Scholar 

  2. B. Q. He, S. J. Shuai, J.-X. Wang, and H. He, “The Effect of Ethanol Blended Diesel Fuels on Emissions from a Diesel Engine,” Atmos. Environ. 37(35), 4965–4971 (2003).

    Article  Google Scholar 

  3. T. S. Kasper, P. Oßwald, M. Kamphus, and K. Kohse-Höinghaus, Ethanol Flame Structure Ivestigated by Molecular Beam Mass Spectrometry,” Combust. Flame 150(3), 220–231 (2007).

    Article  Google Scholar 

  4. N. Leplat, A. Seydi, and J. Vandooren, “An Experimental Study of the Structure of a Stoichiometric Ethanol/Oxygen/Argon Flame,” Combust. Sci. Technol. 180(3), 519–532 (2008).

    Article  Google Scholar 

  5. N. Leplat, P. Dagaut, C. Togbé, and J. Vandooren, “Numerical and Experimental Study of Ethanol Combustion and Oxidation in Laminar Premixed Flames and in Jet-Stirred Reactor,” Combust. Flame 158(4), 705–725 (2011).

    Article  Google Scholar 

  6. P. Saxena and F. A. Williams, “Numerical and Experimental Studies of Ethanol Flames,” Proc. Combust. Inst. 31(1), 1149–1156 (2007).

    Article  Google Scholar 

  7. O. P. Korobeinichev, S. A. Yakimov, D. A. Knyazkov, T. A. Bolshova, A. G. Shmakov, J. Yang, and F. Qi, “A Study of Low-Pressure Premixed Ethylene Flame with and Without Ethanol Using Photoionization Mass Spectrometry and Modeling,” Proc. Combust. Inst. 33(1), 569–576 (2011).

    Article  Google Scholar 

  8. J. Wu, K. H. Song, T. Litzinger, S.-Y. Lee, R. Santoro, M. Linevsky, M. Colket, and D. Liscinsky, “Reduction of PAH and Soot in Premixed Ethylene-Air Flames by Addition of Ethanol,” Combust. Flame 144(4), 675–687 (2006).

    Article  Google Scholar 

  9. K. Kohse-Höinghaus, P. Oßwald, U. Struckmeier, T. Kasper, N. Hansen, C. A. Taatjes, J. Wang, T. A. Cool, S. Gon, and P. R. Westmoreland, “The Influence of Ethanol Addition on Premixed Fuel-Rich Propene-Oxygen-Argon Flames,” Proc. Combust. Inst. 31(1), 1119–1127 (2007).

    Article  Google Scholar 

  10. F. Inal and S. M. Senkan, “Effects of Oxygenate Concentration on Species Mole Fractions in Premixed n-Heptane Flames,” Fuel 84(5), 495–503 (2005).

    Article  Google Scholar 

  11. J. Song, C. Yao, S. Liu, Z. Tian, and J. Wang, “Experiment Study of Oxygenates Impact on n-Heptane Flames with Tunable Synchrotron Vacuum UV Photoionization,” Fuel 88(11), 2297–2302 (2009).

    Article  Google Scholar 

  12. C. Yao, X. Yang, R. R. Raine, C. Cheng, Z. Tian, and Y. Li, “The Effects of MTBE/Ethanol Additives on Toxic Species Concentration in Gasoline Flame,” Energy Fuels 23(7), 3543–3548 (2009).

    Article  Google Scholar 

  13. K. L. McNesby, A. W. Miziolek, T. Nguyen, F. C. Delucia, R. R. Skaggs, and T. A. Litzinger, “Experimental and Computational Studies of Oxidizer and Fuel Side Addition of Ethanol to Opposed Flow Air/Ethylene Flames,” Combust. Flame 42(4), 413–427 (2005).

    Article  Google Scholar 

  14. C. S. McEnally and L. D. Pfefferle, “The Effects of Dimethylether and Ethanol on Benzene and Soot Formation in Ethylene Nonpremixed Flames,” Proc. Combust. Inst. 31(1), 603–610 (2007).

    Article  Google Scholar 

  15. B. A. V. Bennett, C. S. McEnally, L. D. Pfefferle, M. D. Smooke, and M. B. Colket, “Computational and Experimental Study of the Effects of Adding Dimethyl Ether and Ethanol to Nonpremixed Ethylene/Air Flames,” Combust. Flame 156(6), 1289–1302 (2009).

    Article  Google Scholar 

  16. J. B. Howard et al., http://web.mit.edu/anish/www/MITcomb.html (2005).

  17. J. Appel, H. Bockhorn, and M. Y. Frenklach, “Kinetic Modeling of Soot Formation with Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons,” Combust. Flame 121(1, 2), 122–136 (2000).

    Article  Google Scholar 

  18. H. Wang and M. Frenklach, “A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames,” Combust. Flame 110(1, 2), 173–221 (1997).

    Article  Google Scholar 

  19. N. M. Marinov, “A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation,” Int. J. Chem. Kin. 31(3), 183–220 (1999).

    Article  Google Scholar 

  20. O. P. Korobeinichev, S. B. Ilyin, V. V. Mokrushin, and A. G. Shmakov, “Destruction Chemistry of Dimethyl Methylphosphonate in H2/O2/Ar Flame Studied by Molecular Beam Mass Spectrometry,” Combust. Sci. Technol. 116–117(1), 51–67 (1996).

    Article  Google Scholar 

  21. O. P. Korobeinichev, S. B. Ilyin, V. M. Shvartsberg, and A. A. Chernov, “The Destruction Chemistry of Organophosphorus Compounds in Flames-I: Quantitative Determination of Final Phosphorus-Containing Species in Hydrogen-Oxygen Flames,” Combust. Flame 118(4), 718–732 (1999).

    Article  Google Scholar 

  22. O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, D. A. Knyazkov, and I. V. Rybitskaya, “Inhibition of Atmospheric Lean and Rich CH4/O2/Ar Flames by Phosphorus-Containing Compound,” Proc. Combust. Inst. 31(2), 2741–2748 (2007).

    Article  Google Scholar 

  23. A. G. Shmakov, O. P. Korobeinichev, I. V. Rybitskaya, A. A. Chernov, D. A. Knyazkov, T. A. Bolshova, and A. A. Konnov, “Formation and Consumption of NO in H2 + O2 + N2 Flames Doped with NO or NH3 at Atmospheric Pressure,” Combust. Flame 157(3), 556–565 (2010).

    Article  Google Scholar 

  24. A. Bhargava and P. R. Westmoreland, “Measured Flame Structure and Kinetics in Fuel-Rich Ethylene Flame,” Combust. Flame 113(3), 333–347 (1998).

    Article  Google Scholar 

  25. T. A. Cool, K. Nakajima, K. A. Taatjes, A. McIlroy, P. R. Westmoreland, M. E. Law, and A. Morel, “Studies of a Fuel-Rich Propane Flame with Photoionization Mass-Spectrometry,” Proc. Combust. Inst. 30(1), 1681–1688 (2005).

    Article  Google Scholar 

  26. J. D. Bittner, “A Molecular Beam Mass Spectrometer Study of Fuel-rich and Sooting Benzene-Oxygen Flames,” Ph. D. Thesis (Massachusetts Institute of Technology, 1981).

  27. E. L. Knuth, “Molecular Beam Inlet Sampling,” in Engine Emissions: Pollutant Formation and Measurement, Ed. by G. S. Springer and D. J. Patterson (Plenum, New York, 1973), pp. 319–363.

    Google Scholar 

  28. P. K. Sharma, E. L. Knuth, W. S. Young, Species Enrichment Due to Mach Number Focusing in a Molecular Beam Mass Spectrometer Sampling System,” J. Chem. Phys. 64(11), 4345–4351 (1976).

    Article  ADS  Google Scholar 

  29. Y.-K. Kim, K. K. Irikura, M. E. Rudd, M. A. Ali, P. M. Stone, J. Chang, J. S. Coursey, R. A. Dragoset, A. R. Kishore, K. J. Olsen, A. M. Sansonetti, G. G. Wiersma, D. S. Zucker, and M. A. Zucker, “Electron-impact cross sections for ionization and exitation,” http://physics.nist.gov/PhysRefData/Ionization.

  30. J. E. Hudson, M. L. Hamilton, C. Vallancey, and P. W. Harland, “Absolute Electron Impact Ionization Cross-Sections for the C1 to C4 Alcohols,” Phys. Chem. Chem. Phys. 5(15), 3162–3168 (2003).

    Article  Google Scholar 

  31. W. L. Fitch and A. D. Sauter, “Calculation of Relative Electron Impact Total Ionization Cross Sections for Organic Molecules,” Anal. Chem. 55(6), 832–835 (1983).

    Article  Google Scholar 

  32. W. E. Kaskan, “The Dependence of Flame Temperature on Mass Burning Velocity,” Proc. Combust. Inst. 6(1), 134–141 (1957).

    Google Scholar 

  33. C. R. Shaddix, “Correcting Thermocouple Measurements for Radiation Loss: A Critical Review,” in Proc. of the 33rd National Heat Transfer Conf. (Albuquerque, New Mexico, 1999).

  34. O. P. Korobeinichev, G. A. Tereshchenko, I. D. Emelyanov, et al., “Substantiation of the Probe Mass-Spectrometric Method for Studying the Structure of Flames with Narrow Combustion Zones,” Fiz. Goreniya Vzryva 21(5), 22–28 (1985) [Combust., Expl., Shock Waves 21 (5), 524–530 (1985)].

    Google Scholar 

  35. T. Turanyi, I. G. Zsely, and C. Frouzakis, “KINALC: A CHEMKIN Based Program for Kinetic Analysis,” www.chem.leeds.ac.uk/Combustion/Combustion.html.

  36. P. Oßwald, H. Güldenberg, K. Kohse-Höinghaus, B. Yang, T. Yuan, and F. Qi, “Combustion of Butanol Isomers-A Detailed Molecular Beam Mass Spectrometry Investigation of Their Flame Chemistry,” Combust. Flame 158(1), 2–15 (2011).

    Article  Google Scholar 

  37. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Ed. by P. J. Linstrom and W. G. Mallard (National Inst. of Standards and Technology, Gaithersburg MD, 20899); http://webbook.nist.gov.

  38. T. A. Cool, A. McIlroy, F. Qi, P. R. Westmoreland, L. Poisson, D. S. Peterka, and M. Ahmed, “Photoionization Mass Spectrometer for Studies of Flame Chemistry with a Synchrotron Light Source,” Rev. Sci. Instrum. 76(9), 094102 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Knyazkov.

Additional information

Original Russian Text © I.E. Gerasimov, D.A. Knyazkov, S.A. Yakimov, T.A. Bolshova, A.G. Shmakov, O.P. Korobeinichev.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 48, No. 6, pp. 3–20, November–December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, I.E., Knyazkov, D.A., Yakimov, S.A. et al. Effect of ethanol on the chemistry of formation of precursors of polyaromatic hydrocarbons in a fuel-rich ethylene flame at atmospheric pressure. Combust Explos Shock Waves 48, 661–676 (2012). https://doi.org/10.1134/S0010508212060019

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508212060019

Keywords

Navigation