Skip to main content
Log in

Modeling of shock-wave deformation of polymethyl metacrylate

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A model of a Maxwellian elastoplastic body is constructed to describe the behavior of polymethyl metacrylate (C5O2H8)n under loading. A principal feature of this model is supplementing the governing equations with the relaxation time of shear stresses in the form of a continuous dependence on parameters characterizing the state of the medium. The analytical form of the dependence is chosen with allowance for microstructural and mesostructural mechanisms of irreversible deformation. Another specific feature of the model is the equation of state of the medium, which includes the dependence of the internal energy on the first and second invariants of the strain tensor. Such an approach allows obtaining a unified mathematical description of all physical states of polymers. Particular attention is paid at the stage of model verification to comparisons of model predictions with experimental data for the temperature of the shock-compressed material and decay of the shock wave due to its interaction with overtaking and side rarefaction waves. This comparison shows that the model provides an adequate description of shock-wave processes in polymethyl metacrylate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Bartenev and S. Ya. Frenkel’, Physics of Polymers (Khimiya, Leningrad, 1990) [in Russian].

    Google Scholar 

  2. V. A. Stepanov, N. N. Peschanskaya, and V. V. Shpeizman, Strength and Relaxation in Solids (Nauka, Leningrad, 1984) [in Russian].

    Google Scholar 

  3. J. C. Maxwell, The Scientific Letters and Papers of James Clerk Maxwell (Cambrideg University Press, Cambridge, 2002).

    MATH  Google Scholar 

  4. W. Voigt, “Ueber innere Reibung fester Korper, insbesondere der Metalle,” Annalen der Physik 283, 671–693 (1892).

    Article  ADS  Google Scholar 

  5. A. D. Mulliken and M. C. Boyce, “Mechanics of the Rate-Dependent Elastic-Plastic Deformation of Glassy Polymers from Low to High Strain Rates,” int. J. Solids Structures 43(5), 1331–1356 (2006).

    Article  MATH  Google Scholar 

  6. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances (Inst. Exper. Phys., Russian Federal Nuclear Center, Sarov, 2001) [in Russian].

    Google Scholar 

  7. I. V. Kuz’mitskii, “Effect of Phase Transitions on the Shock-Wave Front in PMMA on the Wave Decay Rate and its Structure,” in Extreme States of Matter. Detonation. Shock Waves (Inst. Exper. Phys., Russian Federal Nuclear Center, Sarov, 2005), pp. 289–300) [in Russian].

    Google Scholar 

  8. T. R. Salyer, L. G. Hill, and L. Kin, “Confined PBX 9501 Gap Reinitiation Studies,” in Proc. Shock Compression of Condensed Matter Conf., 2009, pp. 245–248).

  9. K. W. Schuler, J. W. Nunziato, and E. K. Walsh, “Recent Results in Nonlinear Viscoelastic Wave Propagation,” int. J. Solids Structures 9, 1237–1281 (1973).

    Article  MATH  Google Scholar 

  10. L. M. Barker and R. E. Hollenbach, “Shock-Wave Studies of PMMA, Fused Silica, and Sapphire,” J. Appl. Phys. 41(10), 4208–4226 (1970).

    Article  ADS  Google Scholar 

  11. K. W. Schuler, “Propagation of Steady Shock Waves in Polymethil Methacrylate,” J. Mech. Phys. Solids 18, 277–293 (1970).

    Article  ADS  Google Scholar 

  12. R. Menikoff, “Constitutive Model for Polymethyl Methacrylate at High Pressure,” J. Appl. Phys. 96(12), 7696–7704 (2004).

    Article  ADS  Google Scholar 

  13. L. A. Merzhievskii and A. D. Resnyanskii, “Shock-Wave Processes in Metals,” Fiz. Goreniya Vzryva 20(5), 114–122 (1984) [Combust., Expl., Shock Waves 20 (5), 580–586 (1984)].

    Google Scholar 

  14. S. K. Godunov, Elements of Mechanics of Continuous Media (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  15. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatgiz, Moscow, 1963; Academic Press, New York, 1967).

    Google Scholar 

  16. V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at High Pressures and Temperatures (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  17. A. V. Bushman and V. E. Fortov, “Models of the Equation of State of Matter,” Usp. Fiz. Nauk 140(2), 177–232 (1983).

    Article  Google Scholar 

  18. G. V. Kozlov and D. S. Sanditov, Anharmonic Effects and Physicomechanical Properties of Polymers (Nauka, Novosibirsk, 1994) [in Russian].

    Google Scholar 

  19. A. V. Bushman, M. V. Zhernokletov, I. V. Lomonosov, et al., “Study of Plexiglas and Teflon in Waves of Repeated Shock Compression and Isentropic Unloading. Equation of State of Polymers at High Energy densities,” Dokl. Ross. Akad. Nauk 329(5), 581–584 (1993).

    Google Scholar 

  20. K. V. Khishchenko, “Temperature and Heat Capacity of Polymethyl Metacrylate behind the Front of Strong Shock Waves,” Teplofiz. Vys. Temp. 35(6), 1002–1005 (1997).

    Google Scholar 

  21. http://www.ficp.ac.ru/rusbank/.

  22. L. A. Merzhievskii, “Simulation of the Dynamic Compression of Polycrystalline Al2O3,” Fiz. Goreniya Vzryva 34(6), 85–94 (1998) [Combust., Expl., Shock Waves 34 (6), 679–687 (1988)].

    Google Scholar 

  23. C. E. Morris, J. N. Fritz, and R. G. McQueen, “The Equation of State of Polytetrafluoroethylene to 80 GPa,” J. Chem. Phys. 80(10), (1984).

  24. C. Bauwens-Crowet, “The Compression Yield Behaviour of Polymethyl Methacrylate over a Wide Range of Temperatures and Strain-Rates,” J. Mater. Sci. 8, 968–979 (1973).

    Article  ADS  Google Scholar 

  25. J. Richeton, L. Daridon, and Y. Remond, “A Formulation of the Cooperative Model for the Yield Stress of Amorphous Polymers for a Wide Range of Strain Rates and Temperatures,” Polymer 46, 6035–6043 (2005).

    Article  Google Scholar 

  26. V. A. Bershtein, V. M. Egorov, and Yu. A. Emel’yanov, “Interrelation of Principal Relaxation Transitions in Polymers,” Vysokomol. Soed. (A) XXVII(11), 2451–2456 (1985).

    Google Scholar 

  27. L. A. Merzhievskii and S. A. Shamonin, “Construction of the Time Dependence of the Relaxation of Tangential Stresses on the State Parameters of a Medium,” Prikl. Mekh. Tekh. Fiz. 21(5), 170–179 (1980) [Appl. Mech. Tech. Phys. 21 (5), 716–724 (1980)].

    Google Scholar 

  28. N. A. Fleck, W. J. Stronge, and J. H. Liu, “High Strain-Rate Response of Polycarbonate and Polymethyl Methacrylate,” Proc. Roy. Soc. London A 429, 459–479 (1990).

    Article  ADS  Google Scholar 

  29. S. C. Chou, K. D. Robertson, and J. H. Rainey, “The Effect of Strain Rate and Heat Developed during Deformation on the Stress-Strain Curve of Plastics,” Exp. Mech. 13(10), 422–432 (1973).

    Article  Google Scholar 

  30. L. F. Gudarenko, M. V. Zhernokletov, S. I. Kirshanov, et al., “Properties of Shock-Compressed Carbogal. Equations of State for Carbogal and Plexiglas,” Fiz. Goreniya Vzryva 40(3), 104–116 (2004) [Combust., Expl., Shock Waves 40 (3), 344–355 (2004)].

    Google Scholar 

  31. S. B. Kormer, “Optical Study of Properties of Shock-Compressed Condensed Dielectrics,” Usp. Fiz. Nauk 94(4), 641–687 (1968).

    Google Scholar 

  32. S. A. Bordzilovskii and S. M. Karakhanov, “Measurement of the Brightness Temperature and Related Optical Characteristics of Shock-Compressed Polymethyl Metacrylate at 35 GPa,” in Lavrent’ev Readings on Mathematics, Mechanics, and Physics, Proc. VII Int. Conf., Novosibirsk, 2010, pp. 196–197.

  33. Z. Rosenberg and Y. Parton, “Direct Measurement of Temperature in Shock-Loaded Polymethylmethacrylate with Very Thin Copper Thermistors,” J. Appl. Phys. 56(7), 1921–1926 (1984).

    Article  ADS  Google Scholar 

  34. L. A. Merzhievskii and A. D. Resnyanskii, “Selecting a Model to Describe the Attenuation of Shock Waves in Metals,” Fiz. Goreniya Vzryva 19(1), 99–105 (1983) [Combust., Expl., Shock Waves 19 (1), 94–99 (1983)].

    Google Scholar 

  35. T. P. Liddiard, Jr., “The Compression of Polymethyl Methacrylate by Low Amplitude ShockWaves,” in Proc. of Fourth Symp. on Detonation (1965), pp. 214–221.

  36. N. K. Bourne, A. M. Milne, and R. A. Biers, “Measurement of the Pressure Pulse from a Detonating Explosive,” J. Phys. D: Appl. Phys. 38, 1984–1988 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Merzhievskii.

Additional information

Original Russian Text © L.A. Merzhievskii, M.S. Voronin.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 48, No. 2, pp. 113–123, March–April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merzhievskii, L.A., Voronin, M.S. Modeling of shock-wave deformation of polymethyl metacrylate. Combust Explos Shock Waves 48, 226–235 (2012). https://doi.org/10.1134/S0010508212020128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508212020128

Keywords

Navigation