Skip to main content
Log in

Specific features of propagation of an electromagnetic pulse in a solid-propellant energetic system

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The main specific features of propagation of an electromagnetic pulse in a solid-propellant energetic system are studied by means of the numerical solution of three-dimensional Maxwell equations. A case with the electric field vector in the pulse being directed parallel to the structure centerline is considered. The effect of the solid propellant properties on specific features of the formation of electric fields inside the solid-propellant energetic system and in the ambient space is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Condensed Energetic Systems. Brief Encyclopedic Dictionary, Ed. by B. P. Zhukov (Yanus-K, Moscow, 1999) [in Russian].

    Google Scholar 

  2. V. S. Belous, Antimissile Defense and Weapons of the 21st Century (Veche, Moscow, 2002) [in Russian].

    Google Scholar 

  3. R. Fisher, F.W. Smith, and K.-S. Cho, “EMP Coupling to Canonical Models Consisting of Dielectric and Metal Sections with Emphasis Toward Simple Missile Models,” IEEE Trans. Nuclear Sci. NS-28(6), 4490–4494 (1981).

    Article  ADS  Google Scholar 

  4. D. N. Sadovnichii, Yu. M. Milekhin, S. A. Lopatkin, et al., “Pulsed Electrical Breakdown of Energetic Composite Condensed Systems,” Fiz. Goreniya Vzryva 46(4), 107–115 (2010) [Combust., Expl., Shock Waves 46 (4), 464–471 (2010)].

    Google Scholar 

  5. A. I. Gavrilin, M. A. Mel’nikov, and V. B. Shneider, “Ignition of Primer Explosives by an Electric Spark,” in: Combustion and Explosion, Proc. III All-Union Symp. on Combustion and Explosion (Nauka, Moscow, 1972), pp. 44–48.

    Google Scholar 

  6. V. V. Burkin and R. S. Burkina, “Initiation of a Charge of a Gel-Like Reactive Substance by an Electric Explosion. Part 1. Thermal Processes,” Fiz. Goreniya Vzryva 38 (2), 75–82 (2002) [Combust., Expl., Shock Waves 38 (2), 194–200 (2002)].

  7. I. M. Bulanov and V. V. Vorobei, Technology of Rocket and Aerospace Structures Made of Composite Materials (Izd. Bauman Mosk. Gos. Tekh. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  8. I. G. Gurtovnik, V. I. Sokolov, N. N. Trofimov, and S. I. Shalgunov, Radio Transparent Articles Made of Fiberglass Plastic (Mir, Moscow, 2002) [in Russian].

    Google Scholar 

  9. N. P. Bogoroditskii, V. V. Pasynkov, and B. M. Tareev, Electrotechnical Materials (Energiya, Leningrad, 1977) [in Russian].

    Google Scholar 

  10. G. A. Lushcheikin, Methods of Studying Electric Properties of Polymers (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  11. B. M. Tareev, Physics of Dielectric Materials (Energoizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  12. N. N. Trofimov, M. Z. Kanovich, E. M. Kartashov, et al., Physics of Composite Materials (Mir, Moscow, 2005), Vol. 2 [in Russian].

    Google Scholar 

  13. Ya. Yu. Akhadov, Dielectric Properties of Pure Liquids (Izd. Standartov, Moscow, 1972), p. 69 [in Russian].

    Google Scholar 

  14. Yu. M. Milekhin, D. N. Sadovnichii, and S. A. Gusev, “Electrization of solid-propellant energetic systems by ionization radiation,” in Proc. Physics of Extreme States of Matter-2006, Ed. by V. E. Fortov et al. (Inst. Problems Chemical Physics, Russian Acad, of Sci., Chernogolovka, 2006), pp. 163–164.

    Google Scholar 

  15. A. T. Shermukhamedov and A. S. Sigov, “Breakdown in Organic Dielectrics in Strong Magnetic Fields,” Dokl. Akad. Nauk UzbSSR, No. 7, 24–25 (1990).

  16. A. V. Berezin, A. S. Vorontsov, M. B. Markov, and B. D. Plyushchenkov, “Derivation and Solution of the Maxwell Equations in Problems with a Given Wave Front,” Mat. Model. 18(4), 43–60 (2006).

    MathSciNet  MATH  Google Scholar 

  17. R. B. Vaganov and B. Z. Katsenelenbaum, Fundamentals of the Diffraction Theory (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  18. V. V. Kotlyar and M. A. Lichmanov, “Diffraction of a Plane Electromagnetic Wave on a Gradient Optical Element with Transverse Cylindrical Symmetry,” Fiz. Voln. Prots. Radiotekh. Sist. 5(4), 37–43 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Sadovnichii.

Additional information

Original Russian Text © D.N. Sadovnichii, M.B. Markov, A.S. Vorontsov, Yu. M. Milekhin.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 48, No. 1, pp. 110–116, January–February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadovnichii, D.N., Markov, M.B., Vorontsov, A.S. et al. Specific features of propagation of an electromagnetic pulse in a solid-propellant energetic system. Combust Explos Shock Waves 48, 100–105 (2012). https://doi.org/10.1134/S0010508212010121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508212010121

Keywords

Navigation