Skip to main content
Log in

Experience of using synchrotron radiation for studying detonation processes

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Results of studying detonation processes in condensed high explosives, which are obtained by methods based on using synchrotron radiation, are summarized. Beam parameters are given, and elements of the station and measurement system are described. Data on the density distribution in the detonation front for several high explosives are presented, and values of parameters in the Neumann spike and at the Jouguet point are determined. A method used to reconstruct a complete set of gasdynamic characteristics (density fields, particle velocity vector, and pressure) from the experimentally measured dynamics of the x-ray shadow of the examined flow is described. Results of using this method for studying detonation of a charge of plastic-bonded TATB are presented. A method of measuring small-angle x-ray scattering in the course of detonation conversion is described. Based on results obtained by this method for a number of high explosives with an excess content of carbon, kinetics of condensation of free carbon and dynamics of the mean size of nanoparticles being formed thereby are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Aleshaev, O. V. Evdokov, P. I. Zubkov, et al., “Application of synchrotron radiation for studying detonation and shock-wave processes,” Preprint No. 2000-92, Inst. Nuclear Phys., Sib. Branch, Russian Acad. of Sci., Novosibirsk (2000).

    Google Scholar 

  2. A. N. Aleshaev, P. I. Zubkov, G. N. Kulipanov, et al., “Application of synchrotron radiation for studying detonation and shock-wave processes,” Combust., Expl., Shock Waves, 37, No. 5, 585–593 (2001).

    Article  Google Scholar 

  3. V. M. Aul’chenko, O. V. Evdokov, I. L. Zhogin, et al., “Detector for studying explosive processes on a synchrotron radiation beam,” Prib. Tekh. Éksp., No. 2, 1–16 (2010).

  4. K. A. Ten, O. V. Evdokov, I. L. Zhogin, et al., “Density distribution at the detonation front of cylindrical charges of small diameter,” Combust., Expl., Shock Waves, 43, No. 2, 204–211 (2007).

    Article  Google Scholar 

  5. L. V. Al’tshuler, G. S. Doronin, and V. S. Zhuchenko, “Detonation regimes and Jouguet parameters of condensed explosives,” Combust., Expl., Shock Waves, 25, No. 2, 209–224 (1989).

    Article  Google Scholar 

  6. V. K. Ashaev, G. S. Doronin, and A. D. Levin, “Detonation front structure in condensed high explosives,” Combust., Expl., Shock Waves, 24, No. 1, 88–91 (1988).

    Article  Google Scholar 

  7. B. G. Loboiko and S. N. Lyubyatinskii, “Reaction zones of detonating solid explosives,” Combust., Expl., Shock Waves, 36, No. 6, 716–733 (2000).

    Article  Google Scholar 

  8. A. V. Utkin, S. A. Lolesnikov, and V. E. Fortov, “Structure of a steady detonation wave in pressed RDX,” Dokl. Ross. Akad. Nauk, 381, No. 6, 760–762 (2001).

    MATH  Google Scholar 

  9. K. A. Ten, O. V. Evdokov, I. L. Zhogin, et al., “Measurement of the density distribution in detonation processes with the use of synchrotron radiation,” Preprint No. 2005-30, Budker Inst. Nuclear Phys., Sib. Branch, Russian Acad. of Sci., Novosibirsk (2005).

    Google Scholar 

  10. V. V. Pickalov and N. G. Preobrazhenskii, Reconstruction Tomography in Gas Dynamics and Plasma Physics [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  11. V. N. Kozlovskii, Information in Pulsed X-ray Imaging [in Russian], Inst. Technical Physics, Russian Federal Nuclear Center, Snezhinsk (2006).

    Google Scholar 

  12. E. R. Pruuél, L. A. Merzhievskii, K. A. Ten, et al., “Density distribution of the expanding products of steady-state detonation of TNT,” Combust., Expl., Shock Waves, 43, No. 3, 355–364 (2007).

    Article  Google Scholar 

  13. O. V. Evdokov, A. N. Kozyrev, V. V. Litvinenko, et al., “High-speed x-ray transmission tomography for detonation investigation,” Nucl. Instrum. Methods Phys. Res., A575, 116–120 (2007).

    ADS  Google Scholar 

  14. E. R. Pruuél, K. A. Ten, V. M. Titov, et al., “X-ray transmission tomography for detonation investigation,” in: Proc. of 14th Int. Detonation Symp. (2010), pp. 345–351.

  15. K. A. Ten, E. R. Pruuél, L. A. Merzhievsky, et al., “Tomography of the flow of detonation products using SR,” Nucl. Instrum. Methods Phys. Res., A603, 160–163 (2009).

    ADS  Google Scholar 

  16. K. A. Ten, V. M. Titov, E. R. Pruuél, et al., “Study of explosive processes in detonating charges 20 mm in diameter with the use of synchrotron radiation,” Preprint No. 2009-021, Budker Inst. Nuclear Phys., Sib. Branch, Russian Acad. of Sci., Novosibirsk (2009).

    Google Scholar 

  17. GNU Scientific Library. Documentation www.gnu.org/software/gsl.

  18. C. M. Tarver, J. W. Kury, and R. D. Breithaupt, “Detonation waves in triaminotrinitrobenzene,” J. Appl. Phys., 82, No. 8, 3771–3782 (1997).

    Article  ADS  Google Scholar 

  19. K. F. Grebenkin, M. V. Taranik, and A. L. Zherebtsov, “Computer modeling of scale effects at heterogeneous HE detonation,” in: Proc. of 13th Symp. (Int.) on Detonation, Norfolk, USA (2006), pp. 496–505.

  20. V. M. Titov, B. P. Tolochko, K. A. Ten, et al., “Where and when are nanodiamonds formed under explosion?” Diamond Related Mater., 16, No. 12, 2009–2013 (2007).

    Article  ADS  Google Scholar 

  21. K. A. Ten, V. M. Aulchenko, L. A. Lukianchikov, et al., “Application of introduced nano-diamonds for the study of carbon condensation during detonation of condensed explosives,” Nucl. Instrum. Methods Phys. Res., A603, Nos. 1–2, 102–104 (2009).

    ADS  Google Scholar 

  22. K. A. Ten, V. M. Titov, E. R. Pruuél, et al., “Measurements of SAXS signal during TATB detonation using synchrotron radiation,” in: Proc. of 14th Int. Detonation Symp. (2010), pp. 387–391.

  23. D. I. Svergun and L. A. Feigin, Small-Angle X-ray and Neutron Scattering [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  24. V. M. Titov, V. F. Anisichkin, and I. Yu. Mal’kov, “Synthesis of ultradispersed diamond in detonation waves,” Combust., Expl., Shock Waves, 35, No. 3, 372–379 (1989).

    Article  Google Scholar 

  25. V. V. Danilenko, Explosive Synthesis and Sintering of Diamonds [in Russian], Énergoatomizdat, Moscow (2003).

    Google Scholar 

  26. Bibliographic Reference Book on Using SR for Studying Dynamic Processes, http://ancient.hydro.nsc.ru/srexpl.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Pruuél.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 6, pp. 3–15, November–December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titov, V.M., Pruuél, E.R., Ten, K.A. et al. Experience of using synchrotron radiation for studying detonation processes. Combust Explos Shock Waves 47, 615–626 (2011). https://doi.org/10.1134/S0010508211060013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211060013

Key words

Navigation