Skip to main content
Log in

Effect of the temperature dependence of the absorption coefficient on the critical energy of ignition of condensed substances by a laser pulse

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents an analytical criterion of ignition of condensed explosives by a short laser pulse with a Gaussian energy distribution over the beam cross section taking into account the temperature dependence of the absorption coefficient. The dependence of the critical ignition energy density on the beam radius is due to the radial component of heat release from the reaction volume. Estimates of the critical energy density of the laser pulse by this criterion are consistent with the results of numerical solution of the heat-conduction equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Brish, I. A. Galeev, B. N. Zaitsev, E. A. Sbitnev, and L. V. Tatarintsev, “Mechanism of initiation of condensed explosives by laser radiation,” Combust., Expl., Shock Waves, 5, No. 4, 326–328 (1969).

    Article  Google Scholar 

  2. A. A. Volkova, A. D. Zinchenko, I. V. Sanin, V. I. Tarzhanov, and B. B. Tokarev, “Time characteristics of laser initiation of PETN,” Combust., Expl., Shock Waves, 13, No. 5, 645–650 (1977).

    Article  Google Scholar 

  3. E. I. Aleksandrov and V. P. Tsipilev, “Dimensional effect in the initiation of compressed lead azide by single-pulse laser radiation,” Combust., Expl., Shock Waves, 17, No. 5, 550–553 (1981).

    Article  Google Scholar 

  4. Y. F. Karabanov and V. K. Bobolev, “Ignition of initiating explosives by a laser radiation pulse,” Dokl. Akad. Nauk SSSR, 256, No. 5, 1152–1154 (1981).

    Google Scholar 

  5. J. T. Hagan and M. M. Chaudri, “Low energy laser initiation of single crystals of β-lead azide,” J. Mater. Sci., 16, 2457–2466 (1981).

    Article  ADS  Google Scholar 

  6. E. I. Aleksandrov and V. P. Tsipilev, “Effect of the pulse length on the sensitivity of lead azide to laser radiation,” Combust., Expl., Shock Waves, 20, No. 6, 690–694 (1984).

    Article  Google Scholar 

  7. A. I. Bykhalo, E. V. Zhuzhukalo, N. G. Kovalskii, A. N. Kolomiiskii, V. V. Korobov, A. D. Rozhkov, and A. I. Yudin, “Initiation of PETN by high-power laser radiation,” Combust., Expl., Shock Waves, 21, No. 4, 481–483 (1985).

    Article  Google Scholar 

  8. V. I. Tarzhanov, A. D. Zinchenko, V. I. Sdobnov, B. B. Tokarev, A. I. Pogrebov, and A. A. Volkova, “Laser initiation of PETN,” Combust., Expl., Shock Waves, 32, No. 4, 454–459 (1996).

    Article  Google Scholar 

  9. M. A. Ilyushin, I. V. Tselinskii, and A. V. Chernai, “Light-sensitive explosives and compositions and their initiation by a single-pulse laser,” Ros. Khim. Zh., 41, No. 4, 81–90 (1997).

    Google Scholar 

  10. A. V. Chernai, V. V. Sobolev, V. A. Chernai, M. A. Ilyushin, and A. Dlugashek, “Laser ignition of explosive compositions based on di-(3-hydrazine-4-amino-1,2,3-triazole)-copper (II) perchlorate,” Combust., Expl., Shock Waves, 39, No. 3, 335–339 (2003).

    Article  Google Scholar 

  11. M. A. Ilyushin et al., “Effect of addition of ultrafine carbon particles on the threshold of laser ignition of a light-sensitive polymer-containing explosive composition,” Khim. Fiz., 24, No. 10, 49–56 (2005).

    Google Scholar 

  12. V. V. Medvedev, “Effect of inhomogeneous radiation on the ignition thresholds of a double-base porous propellant,” Khim. Fiz, 28, No. 6, 74–76 (2009).

    Google Scholar 

  13. A. A. Kovalskii, S. S. Khlevnoi, and V. F. Mikheev, “The ignition of ballistic powders,” Combust., Expl., Shock Waves, 3, No. 4, 323–331 (1967).

    Article  Google Scholar 

  14. V. N. Vilyunov, Theory of Ignition of Condensed Substances [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  15. I. G. Assovskii and O. I. Leipunskii, “Theory of ignition of fuels by light pulses,” Combust., Expl., Shock Waves, 16, No. 1, 1–7 (1980).

    Article  Google Scholar 

  16. V. E. Zarko and A. B. Kiskin, “Numerical modeling of nonsteady powder combustion under the action of a light flux,” Combust., Expl., Shock Waves, 16, No. 6, 650–654 (1980).

    Article  Google Scholar 

  17. A. V. Chernai, “Initiation of a chemical reaction in PETN by light radiation,” Combust., Expl., Shock Waves, 18, No. 6, 653–656 (1982).

    Article  Google Scholar 

  18. V. I. Tarzhanov, V. F. Kuropatenko, A. T. Sapozhnikov, A. V. Pershina, and A. A. Volkova, “Mathematical modeling of PETN initiation by laser radiation,” in: Detonation. Critical phenomena. Physicochemical Transformations in Shock Waves, Proc. of the 1st All-Union Conf. on Detonation, Joint Inst. of Chem. Phys., USSR Acad. of Sci., Chernogolovka (1978), pp. 46–50.

    Google Scholar 

  19. A. V. Khaneft, “Initiation of lead azide using an electron pulse,” Combust., Expl., Shock Waves, 29, No. 5, 610–613 (1993).

    Article  Google Scholar 

  20. I. G. Dick, “On the ignition of a condensed substance by a narrow light beam,” in: Combustion of Condensed Systems, Proc. of the 8th Symp. on Combustion and Explosion (Tashkent, October 13–17, 1986), Chernogolovka (1986), pp. 94–97.

  21. I. G. Assovskii, “Interaction of laser radiation with reactants. The critical beam diameter,” Dokl. Ross. Akad. Nauk, 337, No. 6, 752–756 (1994).

    Google Scholar 

  22. A. V. Khaneft, “Effect of light flux distribution in a laser beam on the critical ignition energy of a condensed substance,” Khim. Fiz., 17, No. 10, 67–70 (1998).

    Google Scholar 

  23. I. G. Assovskii, Combustion Physics and Interior Ballistics [in Russian] Nauka, Moscow (2005).

    Google Scholar 

  24. J. I. Pankov, Optical Processes in Semiconductors, Dover, New York (1971).

    Google Scholar 

  25. B. U. Barshchevskii, Photoelectric and Optical Properties of Silver Halide [in Russian], Institute of Railway Transport Engineers, Moscow (1967).

    Google Scholar 

  26. A. N. Pikhtin, Optical and Quantum Electronics [in Russian], Vysshaya Shkola, Moscow (2001).

    Google Scholar 

  27. A. A. Kovalev, S. P. Zhvavyi, and G. L. Zykov, “Dynamics of laser-induced phase transitions in cadmium telluride,” Fiz. Tekh. Poluprovod., 39, No. 11, 1345–1349 (2005).

    Google Scholar 

  28. A. E. Averson, V. V. Barzykin, and A. G. Merzhanov, “Approximate method for solving problems of thermal ignition theory,” Dokl. Akad Nauk SSSR, 178, No. 1, 131–134 (1968).

    Google Scholar 

  29. A. V. Khaneft, “The effect of the light beam diameter of a laser pulse on the critical energy of explosive ignition,” Izv. Vyssh. Uchebn. Zaved., Fiz., Prilozhenie, No. 10, 196–199 (2006).

  30. A. V. Khaneft and E. V. Duginov, “The effect of the light beam radius of a laser pulse on the critical energy of explosive ignition,” in: Energetic Materials — Characterisation and Performance of Advanced Systems, 38th Int. Annu. Conf. of ICT (June 26–June 29, 2007), Karlsruhe, Federal Republic of Germany (2007), pp. 117-1–117-11.

    Google Scholar 

  31. G. N. Dul’nev, V. G. Parfenov, and A. V. Sigalov, The Use of Computers for Solving Heat Transfer Problems [in Russian], Vysshaya Shkola, Moscow (1990).

    Google Scholar 

  32. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum, New York (1969).

    Google Scholar 

  33. A. A. Samarskii and Y. P. Popov, Difference Methods for Solving Gas-Dynamic Problems [in Russian], Nauka, Moscow (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khaneft.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 4, pp. 127–135, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duginov, E.V., Khaneft, A.V. Effect of the temperature dependence of the absorption coefficient on the critical energy of ignition of condensed substances by a laser pulse. Combust Explos Shock Waves 47, 490–497 (2011). https://doi.org/10.1134/S0010508211040137

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211040137

Key words

Navigation