Skip to main content
Log in

Deflagration-to-detonation transition in isopropyl nitrate mist/air mixtures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The characteristics and stages of the deflagration-to-detonation transition (DDT) in isopropyl nitrate (IPN) mist/air mixtures are studied and analyzed. A self-sustained detonation wave forms, as is observed from the existence of a transverse wave and a spinning wave structure. The run-up distance of the DDT process and the pitch size of the self-sustained spinning detonation wave in IPN/air mixtures are analyzed. Moreover, a retonation wave forms during the DDT process. Two propagation modes, the high-speed deflagration mode and the self-sustained detonation mode, of the shock-reaction complex (SRC) in IPN mist/air mixtures are found and analyzed. The influence of the mist concentration on the SRC propagation mechanism is studied. The minimum and the optimum IPN mist concentrations for DDT occurrence in IPN mist/air mixtures are determined. The propagation velocity and overpressure of the self-sustained detonation wave in IPN mist/air mixtures are measured and calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Roy, S. M. Frolov, A. A. Borisov, and D. W. Netzer, “Pulse detonation propulsion: challenges, current status, and future perspective,” Prog. Energy Combust. Sci., 30, 545–672 (2004).

    Article  Google Scholar 

  2. C. M. Brophy, D. W. Netzer, J. Sinibaldi, and R. Johnson, “Detonation of a JP-10 aerosol for pulsed detonation applications,” in: G. Roy, S. Frolov, D. Netzer, and A. Borisov (eds.), High-Speed Deflagration and Detonation: Fundamentals and Control [in Russian], Elex-KM, Moscow (2001), pp. 207–222.

    Google Scholar 

  3. D. I. Baklanov, L. G. Gvozdeva, and N. B. Scherbak, “Detonations of hydrocarbon-air mixtures in a pulse detonation chamber,” in: G. Roy, S. Frolov, R. Santoro, and S. Tsyganov (eds.), Advances in Confined Detonations [in Russian], Torus Press, Moscow (2002), pp. 225–230.

    Google Scholar 

  4. S. M. Frolov, V. Ya. Basevich, V. S. Aksenov, and S. A. Polikhov, “Initiation of confined spray detonation by electric discharges,” in: G. D. Roy, S. M. Frolov, R. Santoro, and S. Tsyganov (eds.), Confined Detonations and Pulse Detonation Engines [in Russian], Torus Press, Moscow (2003), pp. 157–174.

    Google Scholar 

  5. S. M. Frolov, V. Ya. Basevich, V. S. Aksenov,and S. A. Polikhov, “Initiation of spray detonation by successive triggering of electric discharges,” in: G. Roy, S. Frolov, R. Santoro, and S. Tsyganov (eds.), Advances in Confined Detonations [in Russian], Torus Press, Moscow (2002), pp. 150–157.

    Google Scholar 

  6. Q. M. Liu, X. D. Li, and C. H. Bai, “Deflagration to detonation in aluminum dust-air mixture under weak ignition condition,” Combust. Flame, 156, 914–921 (2009).

    Article  Google Scholar 

  7. Q. M. Liu, C. H. Bai, L. Jiang, and W. X. Dai, “Deflagration-to-detonation transition in nitromethane mist/aluminum dust/air mixtures,” Combust. Flame, 157, 106–117 (2010).

    Article  Google Scholar 

  8. A. A. Borisov, B. E. Gelfand, E. I. Timofeev, S. A. Tsyganov, and S. V. Khomik, “Self-ignition of atomized liquid fuel in gaseous medium,” in: J. R. Bowen, N. Manson, A. K. Oppenheim, and R. I. Soloukhin (eds.), Progress in Astronautics and Aeronautics, Vol. 88: Flames, Lasers, and Reactive Systems (1983), pp. 239–251.

  9. A. A. Borisov, A. E. Mailkov, S. I. Sumskoi, et al., “Comparison of impulse generated by gaseous detonations and shock waves supported by heterogeneous reactions,” in: G. Roy, S. Frolov, R. Santoro, and S. Tsyganov (eds.), Advances in Confined Detonations [in Russian], Torus Press, Moscow (2002), pp. 158–160.

    Google Scholar 

  10. S. M. Frolov and V. Ya. Basevich, “Spray detonation ignition by controlled trigger of electric dischargers,” J. Propuls. Power, 21, 54–64 (2005).

    Article  Google Scholar 

  11. S. M. Frolov, V. Ya. Basevich, V. S. Aksenov, and S. A. Polikhov, “Optimization study of spray detonation initiation electric discharges,” Shock Waves, 14, 175–186 (2005).

    Article  ADS  Google Scholar 

  12. N. N. Smirnov, V. F. Nikitin, J. Khadem, and Sh. Alyari-Shourekhdeli, “Onset of detonation in polydispersed fuel-air mixtures,” in: Proc. Combust. Inst., 31, 2195–2204 (2007).

    Article  Google Scholar 

  13. Q. M. Liu, C. H. Bai, X. D. Li, L. Jiang, and W. X. Dai, “Coal dust explosions in a large-scale tubes,” Fuel, 89, 329–335 (2010).

    Article  Google Scholar 

  14. N. N. Smirnov and M. V. Tyurnikov, “A study of deflagration and detonation in multiphase hydrocarbon-air mixtures,” Combust. Flame, 96, 130–140 (1994).

    Article  Google Scholar 

  15. N. N. Smirnov, N. I. Zverev, and M. V. Tyurnikov, “Two-phase flow behind a shock wave with phase transition and chemical reactions,” Int. J. Experim. Thermal Fluid Sci., 13, 11–20 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingming Liu.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 4, pp. 82–91, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Bai, C., Dai, W. et al. Deflagration-to-detonation transition in isopropyl nitrate mist/air mixtures. Combust Explos Shock Waves 47, 448–456 (2011). https://doi.org/10.1134/S0010508211040083

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211040083

Keywords

Navigation