Skip to main content
Log in

On the problem of laminar flame propagation in a gas with an inert dust

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents a mathematical model and the results of calculation of the velocity of propagation of the flame front in a fuel gas with suspended inert particles taking into account the thermal expansion of the gas and the dynamic relaxation of particles. Dependences of the steady-state flame velocity on the particle size and mass concentration are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Umnov, A. S. Golik, D. Yu. Paleev, and N. R. Shevtsov, Prevention and Containment of Explosions under Underground Conditions [in Russian], Nedra, Moscow (1990).

    Google Scholar 

  2. A. I. Baratov and A. P. Vogman, Extinguishing Powder Formulations [in Russian], Stroiizdat, Moscow (1982).

    Google Scholar 

  3. M. I. Netseplyaev, A. I. Lyubimova, P. M. Petrukhin, E. P. Ploskogolovyi, Fight Against Coal Dust Explosions in Mines [in Russian], Nedra, Moscow (1992).

    Google Scholar 

  4. Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, “Normal detonation regimes in relaxing media,” Combust., Expl., Shock Waves, 25, No. 1, 109–116 (1989).

    Article  Google Scholar 

  5. A. V. Fedorov, D. A. Tropin, and I. A. Bedarev, “Mathematical modeling of detonation suppression in a hydrogen-oxygen mixture by inert particles,” Combust., Expl., Shock Waves, 46, No. 3, 332–343 (2010).

    Article  Google Scholar 

  6. A. V. Fedorov and I. A. Fedorchenko, “Numerical simulation of shock wave propagation in a mixture of a gas and solid partilcess,” Combust., Expl., Shock Waves, 46, No. 5, 578–588 (2010).

    Article  Google Scholar 

  7. A. G. Merzhanov, B. I. Khaikin, and K. G. Shkadinskii, “Establishment of steady-state flame propagation when igniting a gas by a heated surface,” J. Appl. Mech. Tech. Phys., No. 5, 42–48 (1969).

    Google Scholar 

  8. K. G. Shkadinskii and V. V. Barzykin, “Hot-surface ignition of gases with allowance for diffusion and hydrodynamics,” Combust., Expl., Shock Waves, 4, No. 2, 100–104 (1968).

    Article  Google Scholar 

  9. E. I. Gubin and I. G. Dik, “Flame propagation in a dusty gas,” Combust., Expl., Shock Waves, 23, No. 6, 685–690 (1987).

    Article  Google Scholar 

  10. I. G. Dik, E. I. Gubin, and A. Yu. Krainov, “Unsteady interaction of a combustion wave with a dusty cloud,” Inzh.-Fiz. Zh., 55, No. 2, 236–243 (1988).

    Google Scholar 

  11. A. Yu. Krainov and V. A. Shaurman, “On the limits of flame propagation in a dusty gas,” Combust., Expl., Shock Waves, 33, No. 4, 403–408 (1997).

    Article  Google Scholar 

  12. E. I. Gubin, I. G. Dik, and A. Yu. Krainov, “Inhibition of gas flames by powder compositions,” Combust., Expl., Shock Waves, 25, No. 2, 184–188 (1989).

    Article  Google Scholar 

  13. L. G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon Press, Oxford-New York (1966).

    Google Scholar 

  14. E. L. Sternin Fundamentals of Gas Dynamics of Two-Phase Flows in Nozzles [in Russian], Mashinostroenie, Moscow (1974).

    Google Scholar 

  15. B. Lewis and G. Von Elbe, Combustion, Flames and Explosions in Gases, Academic Press, Orlando (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dement’ev.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 4, pp. 70–75, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dement’ev, A.A., Krainov, A.Y. On the problem of laminar flame propagation in a gas with an inert dust. Combust Explos Shock Waves 47, 436–441 (2011). https://doi.org/10.1134/S001050821104006X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050821104006X

Key words

Navigation