Skip to main content
Log in

Perturbations of the flame structure due to a thermocouple. I. Experiment

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

In thermocouple measurements in flames of gaseous or condensed systems, it is usually assumed that due to the small sizes of thermocouples, the flame perturbations caused by thermocouples are negligible. It is shown, however, that these perturbations can be significant. Temperature measurements in a laminar methane flame at atmospheric pressure revealed a systematic overestimation of measured temperatures compared with the temperature of the unperturbed flame in the temperature gradient region and in the region of the maximum concentration of radicals. This overestimation was measured, and its causes were analyzed. Previously, such effects have not been studied in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Fristrom and A. A. Westenberg, Flame Structure, McGraw-Hill, New York (1965).

    Google Scholar 

  2. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Plenum, New York (1985).

    Book  Google Scholar 

  3. A. T. Hartlieb, B. Atakan, and K. Kohse-Hoinghaus, “Effects of a sampling quartz nozzle on the flame structure of a fuel-rich low-pressure propene flame,” Combust. Flame, 121, No. 4, 610–624 (2000).

    Article  Google Scholar 

  4. N. Leplat, A. Seydi, and J. Vandooren, “An experimental study of the structure of a stoichiometric ethanol/oxygen/argon flame,” Combust. Sci. Technol., 180, 519–532 (2008).

    Article  Google Scholar 

  5. O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, D. A. Knyazkov, and I. V. Rybitskaya, “Inhibition of atmospheric lean and Rich CH4/O2/Ar flames by phosphorus-containing compound,” in: Proc. Combust. Inst., 31, No. 2, 2741–2748 (2007).

    Article  Google Scholar 

  6. A. A. Zenin, “Structure of temperature distribution in steady-state burning of a ballistite powder,” Combust., Expl., Shock Waves, 2, No. 3, 67–76 (1966).

    Google Scholar 

  7. J. Vandooren and J. Bian, “Validation of H2/O2 reaction mechanisms by comparison with the experimental structure of a rich hydrogen-oxygen flame,” in: 23rd Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh, PA (1990), pp. 341–346.

    Google Scholar 

  8. A. N. Hayhurst and D. B. Kittelson, “Heat and mass transfer considerations in the use of electrically heated thermocouples,” Combust. Flame, 28, 301–317 (1977).

    Article  Google Scholar 

  9. O. P. Korobeinichev, S. B. Ilyin, V. V. Mokrushin, and A. G. Shmakov, “Destruction chemistry of dimethyl methylphosphonate in H2/O2/Ar flame studied by molecular beam mass spectrometry,” Combust. Sci. Technol., 116, No. 1, 51–67 (1996).

    Article  Google Scholar 

  10. A. A. Zenin, “Processes in combustion sones of ballistite powders,” Physical Processes in Combustion and Explosion [in Russian], Atomizdat, Moscow (1980), pp. 68–105

    Google Scholar 

  11. A. A. Zenin “Thermophysics of stable combustion waves of solid propellants,” in: Progress in Astronautics and Aeronautics, Vol. 143 (1992), pp. 197–231.

    Google Scholar 

  12. A. A. Zenin, “HMX and RDX: Combustion mechanism and influence on modern double-base propellant combustion,” J. Propulsion Power, 11, No. 4, 752–758 (1995).

    Article  Google Scholar 

  13. V. P. Sinditskii, V. Y. Egorshev, A. I. Levshenkov, and V. V. Serushkin, “Combustion of ammonium dinitramid. Part 2: Combustion mechanism,” J. Propulsion Power, 22, No. 4, 777–785 (2006).

    Article  Google Scholar 

  14. A. A. Zenin and S. V. Finjakov, “Studying RDX and HMX combustion by various experimental techniques,” Combust., Expl., Shock Waves, 45, No. 5, 559–578 (2009).

    Article  Google Scholar 

  15. T. Parr and D. Hanson-Parr, “Optical diagnostics of solid-propellant flame structures,” in: V. Yang, T. B. Brill, and W.-Z. Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Reston, VA (2000), pp. 381–411.

  16. A. T. Hartlieb, B. Atakan, and K. Kohse-Hoinghaus, “Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B, 70, 435–445 (2000).

    Article  ADS  Google Scholar 

  17. N. Bahlawane, U. Struckmeier, et al., “Noncatalytic thermocouple coatings produced with chemical vapor deposition for flame temperature measurements,” Rev. Sci. Instr., 78, 013905 (2007).

    Article  ADS  Google Scholar 

  18. A. A. Zenin “Errors of thermocouple readings in flame,” Inzh.-Fiz. Zh., 5, No. 5, 68–74 (1962).

    Google Scholar 

  19. A. A. Zenin “Heat transfer of microthermocouples in combustion of condense substances,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 125–131 (1963).

  20. A. A. Zenin “Experimental study of the combustion mechanism of solid propellants and the flow of their combustion products,” Doct. Dissertation, Institute of Chemical Physics, Moscow (1976).

    Google Scholar 

  21. M. V. Heitor and A. L. N. Moreira, “Thermocouple and sample probes for combustion studies,” Prog. Energy Combust. Sci., 19, 259–278 (1993).

    Article  Google Scholar 

  22. V. E. Zarko, A. I. Sukhinin, and S. S. Khlevnoi, “Temperature measurements in the gas phase of a burning propellant,” Combust., Expl., Shock Waves, 6, No. 4, 487–491 (1970).

    Article  Google Scholar 

  23. W. E. Kaskan, “The dependence of flame temperature on mass burning velocity,” in: Sixth Symp. (Int.) on Combustion, Reinhold (1957), pp. 134–143.

  24. C. R. Shaddix, “Correcting thermocouple measurements for radiation loss: A critical review,” in: Proc. 33rd National Heat Transfer Conf., Albuquerque, New Mexico, August 15–17 (1999), HTD99-282, pp. 1–10.

  25. A. A. Zenin and S. V. Finjakov, “Characteristics of RDX combustion zones at different pressures and initial temperatures,” Combust., Expl., Shock Waves, 42, No. 5, 521–533 (2006).

    Article  Google Scholar 

  26. A. A. Zenin and S. V. Finjakov, “Characteristics of octogen and hexogen combustion: A comparison,” in: Proc. 37th Int. Annu. Conf. of ICT, Fraunhofer Inst. Chem. Technol., Karlsruhe (2006), pp. 118.1–118.18.

  27. M. V. Beckstead, “Condensed-phase control: Or Gasphase control?” Combust., Expl., Shock Waves, 43, No. 2, 243–245 (2007).

    Article  Google Scholar 

  28. O. P. Korobeinichev, A. A. Paletsky, and E. N. Volkov, “Flame structure and combustion chemistry of energetic materials,” Khim. Fiz., 27, No. 4, 34–59 (2008).

    Google Scholar 

  29. G. I. Ksandopulo and L. I. Koplylova, “Chemistry of combustion waves in substances with a complicated structure of reagent molecules. 1. Structure of the front of rich isopentane flame,” Combust., Expl., Shock Waves, 40, No. 5, 535–544 (2004).

    Article  Google Scholar 

  30. P. A. Skovorodko, A. G. Tereshchenko, O. P. Korobeinichev, D. A. Knyazkov, and A. G. Shmakov, “Investigation of flame perturbations produced by the sampling probe. 1. Perturbations of the gasdynamic flow structure,” Khim. Fiz., 25, No. 10, 23–32 (2006).

    Google Scholar 

  31. R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, “PREMIX: A Fortran program for modeling laminar one-dimensional premixed flames,” Sandia National Laboratories Report No. SAND85-8240 (1985); http://www.ca.sandia.gov/chemkin/.

  32. R. J. Kee, F. M. Rupley, and J. A. Miller, “CHEMKIN-II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” Sandia National Laboratories Report No. SAND 89-8009B (1989).

  33. G. P. Smith et al., GRI-Mech 3.0 (1999). http://www.me.berkeley.edu/gri mech/version30/text30.html.

  34. D. A. Knyazkov, V. M. Shvartsberg, A. G. Shmakov, and O. P. Korobeinichev, “Influence of organophosphorus inhibitors on the structure of atmospheric lean and rich methane-oxygen flames,” Combust., Expl., Shock Waves, 43, No. 2, 23–31 (2007).

    Google Scholar 

  35. D. A. Knyazkov, A. G. Shmakov, and O. P. Korobeinichev, “Application of molecular beam mass spectrometry in studying the structure of a diffusive counterflow flame of CH4/N2 and O2/N2 doped with trimethylphosphate,” Combust. Flame, 151, 37–45 (2007).

    Article  Google Scholar 

  36. H. Y. Wong, Handbook of Essential Formulae and Data on Heat Transfer for Engineers, Longman, London-New York (1977).

    Google Scholar 

  37. Yu. V. Polezhaev and F. B. Yurevich, Thermal Protection [in Russian], Énergiya, Moscow (1976).

    Google Scholar 

  38. V. A. Petrov and V. Yu. Reznik, “Experimental study of the integral normal emissivity of partially transparent materials,” in: Thermophysical Properties of Solids [in Russian], Nauka, Moscow (1973), pp. 120–125.

    Google Scholar 

  39. N. M. Rubtsov, G. I. Tsvetkov, and V. I. Chernysh, “On the regularities of hydrogen combustion near the lower flammability limit in the kinetic region of chain breaking,” Zh. Fiz. Khim., 83, No. 10, 1884–1887 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Tereshchenko.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 4, pp. 34–45, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tereshchenko, A.G., Knyaz’kov, D.A., Skovorodko, P.A. et al. Perturbations of the flame structure due to a thermocouple. I. Experiment. Combust Explos Shock Waves 47, 403–413 (2011). https://doi.org/10.1134/S0010508211040034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211040034

Keywords

Navigation