Skip to main content
Log in

Reducing the critical pressure of detonation initiation in transmission to a semiconfined volume

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The classical methods of initiating detonation in a volume of a reacting mixture have been studied in sufficient detail but they are not always suitable for practical purposes. This paper studies the effect of different stages of the deflagration-to-detonation transition in a small-diameter tube on the efficiency of initiation of gaseous detonation in transmission to a semiconfined volume. The methods of initiation described in this paper are important for assessing the risk of fire and explosion in household use and especially in industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Litcheld, M. H. Hay, and D. R. Forshey, “Direct electrical initiation of freely expanding gaseous detonation waves,” in: Proc. of 9th Symp. (Int.) on Combustion (1962), pp. 282–286.

  2. J. H. Lee, B. H. K. Lee, and R. Knystautas, “Direct initiation of cylindrical gaseous detonations,” Phys. Fluids, 9, No. 1, 221–222 (1966).

    Article  ADS  Google Scholar 

  3. V. F. Klimkin, R. I. Soloukhin, and P. Wolansky, “Initial stages of spherical detonation directly initiated by a laser spark,” Combust. Flame, 21, No. 1, 111–117 (1973).

    Article  Google Scholar 

  4. J. H. Lee and H. Matsui, “A comparison of the critical energies for direct initiation of spherical detonation in acetylene-oxygen mixtures,” Combust. Flame, 28, No. 1, 61–66 (1977).

    Article  Google Scholar 

  5. I. O. Moen, J. W. Funk, S. A. Ward, G. M. Rude, and P. A. Thibault, “Detonation length scales for fuel-air mixtures,” in: J. R. Bowen, N. Manson, A. K. Oppenheim, R. I. Soloukhin (eds.), Progress in Astronautics and Aeronautics, Vol. 94: Dynamics of Shock Waves, Explosions, and Detonations (1984), pp. 55–79.

  6. Ya. B. Zel’dovich, S. M. Kogarko, and N. I. Simonov, “Experimental study of spherical detonation,” Zh. Teoret. Fiz., 26, No. 8, 1744–1752 (1957).

    Google Scholar 

  7. L. G. Gvozdeva, “Experimental investigation of diffraction of detonation waves a stoichiometric mixture of methane with air,” Prikl. Mekh. Tekh. Fiz., No. 5, 53–56 (1961).

  8. V. V. Mitrofanov and R. I. Soloukhin, “On the diffraction of a multifront wave,” Dokl. Akad. Nauk SSSR, 159, No. 5, 1003–1006 (1964).

    Google Scholar 

  9. D. H. Edwards, G. O. Thomas, and M. A. Nettleton, “The diffraction of a planar detonation wave at an abrupt area change,” J. Fluid Mech., 95, 79–96 (1979).

    Article  ADS  Google Scholar 

  10. S. M. Kogarko, V. V. Adushkin, and A. G. Lyamin, “Investigation of spherical detonation of gas mixtures,” Nauch.-Tekh. Probl. Goren. Vzryva, No. 2, 22–34 (1965).

  11. A. L. Podgrebennikov, E. Gel’fand, S. M. Kogarko, and A. A. Borisov, “On the causes of spherical detonation in a closed volume,” Dokl. Akad. Nauk SSSR, 184, No. 4, 883–885 (1969).

    Google Scholar 

  12. G. Wagner, K. Dodge, and D. Pangritz, “Experiments on velocity augmentation of spherical flames by grids,” Acta Astronautica, 3, 1067–1076 (1976).

    Article  Google Scholar 

  13. V. A. Gorev and S. N. Miroshnikov, “Accelerated combustion in gas volumes,” Khim. Fiz., No. 6, 111 (1982).

    Google Scholar 

  14. V. I. Makeev, Y. A. Gostintsev, V. V. Strogonov, Yu. A. Bokhon, Yu. N. Chernushkin, and V. N. Kulikov, “Combustion and detonation of hydrogen-air mixtures in free spaces,” Combust., Expl., Shock Waves, 19, No. 5, 548–550 (1983).

    Article  Google Scholar 

  15. R. Knystautas and J. H. Lee, “On the effective energy for direct initiation of gaseous detonation,” Combust. Flame, 27, No. 2, 221–228 (1976).

    Article  Google Scholar 

  16. A. A. Vasil’ev, Yu. A. Nikolaev, and V. Y. Ul’yanitskii, “Critical energy of initiation of a multifront detonation,” Combust., Expl., Shock Waves, 15, No. 6, 768–775 (1979).

    Article  Google Scholar 

  17. V. Yu. Ul’yanitskii, “Closed model of direct initiation of gas detonation taking account of instability. I. Point initiation,” Combust., Expl., Shock Waves, 16, No. 3, 331–341 (1980).

    Article  Google Scholar 

  18. V. Yu. Ul’yanitskii, “Closed model of direct initiation of gas detonation taking account of instability. I. Nonpoint initiation,” Combust., Expl., Shock Waves, 16, No. 4, 79–89 (1980).

    Google Scholar 

  19. L. He and P. Clavin, “On the direct initiation of gaseous detonations by an energy source,” J. Fluid Mech., 277 227–248 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. J. H. S. Lee and A. J. Higgins, “Comments on criteria for direct initiation of detonation,” Phil. Trans. Roy. Soc. London, A 357, 3503–3521 (1999).

    MathSciNet  ADS  Google Scholar 

  21. Yu. A. Nikolaev, A. A. Vasil’ev, and V. Yu. Ul’yanitskii, “Gas detonation and its applications in engineering and technology (Review),” Combust., Expl., Shock Waves, 39, No. 4, 382–410 (2003).

    Article  Google Scholar 

  22. D. C. Bull, J. E. Elsworth, G. Hooper, and C. P. Quinn, “Initiation of spherical detonation in hydrocarbon/air mixtures,” Acta Astronautica, 5, 997–1008 (1978).

    Article  Google Scholar 

  23. A.A. Vasil’ev, M. S. Drozdov, S. G. Khidirov, “Nonclassical regimes of wave diffraction in combustible mixtures,” Combust., Expl., Shock Waves, 42, No. 6, 746–752 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Krivosheev.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 3, pp. 84–91, May–June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivosheev, P.N., Penyaz’kov, O.G. Reducing the critical pressure of detonation initiation in transmission to a semiconfined volume. Combust Explos Shock Waves 47, 323–329 (2011). https://doi.org/10.1134/S0010508211030099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211030099

Key words

Navigation