Skip to main content
Log in

Application of propane-butane in detonation deposition facilities

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Extensive data on the length of the deflagration-to-detonation transition (DDT) are obtained for a wide range of explosive gas mixtures of acetylene, propane-butane, and methane with oxygen in tubes with constant and constricting cross sections. For the fuel-oxygen mixtures examined, it is found that the DDT length can be reduced to one tube diameter by using a volume system of obstacles with the size and distance between the obstacles being commensurable with the cell size of multifront detonation in these mixtures. The optimal mixture for deposition is found to be an explosive propane-butane mixture with oxygen in which the fraction of propane-butane is ≈25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Nikolaev and P. A. Fomin, “Analysis of equilibrium flows of chemically reacting gases,” Combust., Expl., Shock Waves, 18, No. 1, 53–58 (1982).

    Article  Google Scholar 

  2. A. K. Oppenheim and P. A. Urtiew, “Experimental observations of the transition to detonation in an explosive gas,” Proc. Roy. Soc. A, 295, 13–28 (1966).

    Article  ADS  Google Scholar 

  3. Ya. B. Zel’dovich, V. B. Librovich, G. M. Makhviladze, and G. M. Sivashinskii, “On the onset of detonation in a nonuniformly heated gas,” J. Appl. Mech. Tech. Phys., 11, No. 2, 264–270 (1970).

    Article  ADS  Google Scholar 

  4. N. N. Smirnov, V. F. Nikitin, A. P. Boichenko, et al., “Control of deflagration to detonation transition in gaseous systems,” in: G. Roy (ed.), Control of Detonation Processes, ELEX, Moscow (2000), pp. 2–6.

    Google Scholar 

  5. A. M. Khokhlov, E. S. Oran, and G. O. Thomas, “Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flames,” Combust. Flame, 117, 323–339 (1999).

    Article  Google Scholar 

  6. E. E. Meshkov, “Instability on a shock-wave accelerated interface of two gases,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 151–158 (1969).

  7. R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,” Comm. Pure Appl. Math., 13, 297–319 (1960).

    Article  MathSciNet  Google Scholar 

  8. A. A. Vasil’ev, Yu. A. Nikolaev, and V. Yu. Ul’yanitskii, “Critical energy of initiation of a multifront detonation,” Combust., Expl., Shock Waves, 15, No. 6, 768–775 (1979).

    Article  Google Scholar 

  9. V. Yu. Ul’yanitskii, “Closed model of direct initiation of gas detonation taking account of instability. I. Point initiation,” Combust., Expl., Shock Waves, 16, No. 3, 331–341 (1980).

    Article  Google Scholar 

  10. V. Yu. Ul’yanitskii, “Closed model of direct initiation of gas detonation taking account of instability. II. Nonpoint initiation,” Combust., Expl., Shock Waves, 16, No. 4, 427–434 (1980).

    Article  Google Scholar 

  11. K. I. Shchelkin, “Two types of unstable combustion,” Zh. Exp. Teor. Fiz., 36, 600–606 (1959).

    MathSciNet  Google Scholar 

  12. T. P. Gavrilenko, “Deflagration-to-detonation transition in acetylene-based mixtures,” Fiz. Goreniya Vzryva, 16, No. 5, 148–149 (1980).

    Google Scholar 

  13. A. A. Vasil’ev, “Estimation of critical conditions for the deflagration-to-detonation transition,” Combust., Expl., Shock Waves, 42, No. 2, 205–209 (2006).

    Article  Google Scholar 

  14. V. Yu. Ul’yanitskii, “Role of ‘flashing’ and transversewave collisions in the evolution of a multifrontal detonation-wave structure in gases,” Combust., Expl., Shock Waves, 17, No. 2, 227–232 (1981).

    Article  Google Scholar 

  15. A. A. Vasil’ev and Yu. A. Nikolaev, “Model of the nucleus of a multifront gas detonation,” Combust., Expl., Shock Waves, 12, No. 5, 667–674 (1976).

    Article  Google Scholar 

  16. A. A. Vasil’ev and V. V. Grigor’ev, “Critical conditions for gas detonation in sharply expanding channels,” Combust., Expl., Shock Waves, 16, No. 5, 579–585 (1980).

    Article  Google Scholar 

  17. V. Yu. Ul’yanitskii, A. A. Vasil’ev, T. P. Gavrilenko, et al., “Tube of a facility for gas deposition of coatings,” Author’s Certificate No. 1072320 (1983).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Gavrilenko.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 1, pp. 92–98, January–February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilenko, T.P., Ul’yanitskii, V.Y. Application of propane-butane in detonation deposition facilities. Combust Explos Shock Waves 47, 81–86 (2011). https://doi.org/10.1134/S0010508211010114

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211010114

Keywords

Navigation