Skip to main content
Log in

Structure of an atmospheric-pressure H2/O2/N2 flame doped with iron pentacarbonyl

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the measurement and simulation data on the thermal and chemical structure of an atmospheric-pressure premixed H2/O2/N2 flame doped with iron pentacarbonyl Fe(CO)5. Soft ionization molecular beam mass spectrometry was used to measure concentration profiles of the combustion products of iron pentacarbonyl: Fe, FeO2, FeOH, and Fe(OH)2. A comparison of experimental and simulated concentration profiles showed that they are in satisfactory agreement for FeO2 and Fe(OH)2 and differ significantly for Fe and FeOH. Thus, the previously proposed kinetic model for the oxidation of iron pentacarbonyl was tested and it was shown that the mechanism needs further elaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Bonne, W. Jost, and H. G. Wagner, “Iron pentacarbonyl in methane/oxygen (on air) flames,” Fire Research Abstr. Rev., 4, 6–18 (1962).

    Google Scholar 

  2. G. Lask and H. G. Wagner, “Influence of additives on the velocity of laminar flames,” Proc. Combust. Inst., 8, 432 (1962).

    Google Scholar 

  3. D. Reinelt and G. T. Linteris, “Experimental study of the inhibition of premixed and diffusion flames by iron pentacarbonyl,” Proc. Combust. Inst., 26, 1421–1428 (1996).

    Google Scholar 

  4. M. D. Rumminger, D. Reinelt, V. Babushok, and G. T. Linteris, “Numerical study of the inhibition of premixed and diffusion flames by iron pentacarbonyl,” Combust. Flame, 116, 207–219 (1999).

    Article  Google Scholar 

  5. M. D. Rumminger and G. T. Linteris, “Inhibition of premixed carbon monoxide-hydrogen-oxygen-nitrogen flames by iron pentacarbonyl,” Combust. Flame, 20, 451–464 (2000).

    Article  Google Scholar 

  6. G. T. Linteris, V. R. Katta, and F. Takahashi, “Experimental and numerical evaluation of metallic compounds for suppressing cup-burner flames,” Combust. Flame, 38, 78–96 (2004).

    Article  Google Scholar 

  7. M. D. Rumminger and G. T. Linteris, “The role of particles in the inhibition of premixed flames by iron pentacarbonyl,” Combust. Flame, 23, 82–94 (2000).

    Article  Google Scholar 

  8. M. D. Rumminger and G. T. Linteris, “The role of particles in the inhibition of counterflow diffusion flames by iron pentacarbonyl,” Combust. Flame, 128, 145–164 (2002).

    Article  Google Scholar 

  9. G. T. Linteris and V. Babushok, “Promotion or inhibition of hydrogen-air ignition by iron-containing species,” Proc. Combust. Inst., 32, 2535–2542 (2009).

    Article  Google Scholar 

  10. G. T. Linteris, M. D. Rumminger, V. Babushok, and W. Tsang, “Flame inhibition by ferrocene and blends of inert and catalytic agents,” Proc. Combust. Inst., 28, 2965–2972 (2000).

    Article  Google Scholar 

  11. K. B. Kim, K. A. Masiello, and D. W. Hahn. “Reduction of soot emissions by iron pentacarbonyl in isooctane diffusion flames,” Combust. Flame, 154, 164–180 (2008).

    Article  Google Scholar 

  12. J. Zhang and C. M. Megaridis, “Soot suppression by ferrocene in laminar ethylene/air nonpremixed flames,” Combust. Flame, 105, 528–540 (1996).

    Article  Google Scholar 

  13. J. B. Howard and W. J. Kausch, Jr. “Soot control by fuel additives,” Prog. Energy Combust. Sci., 6, 263–276 (1980).

    Article  Google Scholar 

  14. N. D. Marsh, I. Preciado, E. G. Eddings, and A. F. Sarofim, “Evaluation of organometallic fuel additives for soot suppression,” Combust. Sci. Technol., 179, 987–1001 (2007).

    Article  Google Scholar 

  15. K. Brezinsky, “Gas-phase combustion synthesis of materials,” Proc. Combust. Inst., 26, 1805–1816 (1996).

    Google Scholar 

  16. M. S. Wooldridge, “Gas-phase combustion synthesis of particles,” Prog. Energy Combust. Sci., 24, 63–87 (1998).

    Article  Google Scholar 

  17. P. Roth, “Particle synthesis in flames,” Proc. Combust. Inst., 31, 1773–1788 (2007).

    Article  Google Scholar 

  18. C. Janzen, P. Roth, and B. Rellinghaus, “Characteristics of Fe2O3 nanoparticles from doped low-pressure H2/O2/Ar flames,” J. Nanoparticle Res., 1, 163–167 (1999).

    Article  Google Scholar 

  19. C. Janzen and P. Roth, “Formation and characteristics of Fe2O3 nano-particles in doped low pressure H2/O2/Ar flames,” Combust. Flame, 125, 1150–1161 (2001).

    Article  Google Scholar 

  20. K. Tian, Z. S. Li, S. Staude, B. Li, Z. W. Sun, A. Lantz, M. Alden, and B. Atakan, “Influence of ferrocene addition to a laminar premixed propene flame: Laser diagnostics, mass spectrometry and numerical simulations,” Proc. Combust. Inst., 32, 445–452 (2009).

    Article  Google Scholar 

  21. I. Wlokas, S. Staude, C. Hecht, B. Atakan, and C. Schulz, “Measurement and simulation of Fe-atom concentration in premixed Fe(CO)5-doped low-pressure H2/O2 flames,” in: Proc. of the 4th European Combustion Meeting., Vienna, Austria (2009).

  22. O. P. Korobeinichev, L. V. Kuibida, A. A. Paletsky, and A. A. Chernov, “Study of solid propellant flame structure by mass-spectrometric sampling,” Combust. Sci. Technol., 113–114, 557–571 (1996).

    Article  Google Scholar 

  23. O. P. Korobeinichev, S. B. Ilyin, V. M. Shvartsberg, and A. A. Chernov, “The destruction chemistry of organophosphorus compounds in flames,” Combust. Flame, 118, 718–732 (1999).

    Article  Google Scholar 

  24. R. J. Kee, F. M. Rupley, and J. A. Miller, “CHEMKIN-II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” Sandia National Laboratories Report No. SAND 89-8009B (1989).

  25. R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, “PREMIX: A Fortran program for modeling laminar one-dimensional premixed flames,” Sandia National Laboratories Report No. SAND85-8240 (1985). http://www.ca.sandia.gov/chemkin/.

  26. K. A. Burton, H. D. Ladoucer, and J. W. Fleming, “Short communication: An improved noncatalytic coating for thermocouples,” Combust. Sci. Technol., 81, 141–145 (1992).

    Article  Google Scholar 

  27. W. E. Kaskan, “The dependence of flame temperature on mass burning velocity,” Proc. Combust. Inst., 6, 134–143 (1957).

    Google Scholar 

  28. O. P. Korobeinichev, A. G. Tereshchenko, I. D. Emelyanov, A. L. Rudnitskii, “Substantiation of the probe mass-spectrometric method for studying the structure of flames with narrow combustion zones,” Combust., Expl., Shock Waves, 21, No. 5, 524–530 (1985).

    Article  Google Scholar 

  29. T. Turanyi, “MECHMOD v. 1.4: Program for the transformation of kinetic mechanisms,” available at http://www.chem.leeds.ac.uk/Combustion/Combustion.html.

  30. T. Turanyi, I. G. Zsely, and C. Frouzakis, “KINALC: A CHEMKIN based program for kinetic analysis,” available at http://www.chem.leeds.ac.uk/Combustion/Combustion.html.

  31. I. G. Zsely, I. Virag, and T. Turanyi, “FluxViewer: Visualisation tool for element fluxes,” available at http://garfield.chem.elte.hu/Combustion/fluxviewer.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Shmakov.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 1, pp. 3–14, January–February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, I.E., Knyazkov, D.A., Shmakov, A.G. et al. Structure of an atmospheric-pressure H2/O2/N2 flame doped with iron pentacarbonyl. Combust Explos Shock Waves 47, 1–11 (2011). https://doi.org/10.1134/S0010508211010011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211010011

Keywords

Navigation