Skip to main content
Log in

The Pathway of Amyloid Aggregation of Titin

  • DISCUSSIONS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The process of amyloid aggregation is quite complex and poorly studied. In this paper, summarizing the previously obtained results on the aggregation of the multidomain smooth muscle protein titin, we tried to complement the idea of its amyloid aggregation by presenting a new, in our opinion, possible mechanism. The main conclusion is that the ability of titin to form amorphous aggregates seems to be the only possible means of aggregation of this protein. Apparently, only individual sections of the molecules, and not the entire protein, are involved in the formation of the amyloid structure in amorphous aggregates of smooth muscle titin. This feature distinguishes titin from other amyloid or amyloid-like proteins due to the large size of the molecule. The possible energy landscape underlying the formation of amyloid aggregates of titin is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. C. Li, J. Adamcik, and R. Mezzenga, Nat. Nanotechnol. 7, 421 (2012). https://doi.org/10.1038/nnano.2012.62

    Article  ADS  CAS  PubMed  Google Scholar 

  2. R. Nelson, M. R. Sawaya, M. Balbirnie, et al., Nature 435, 773 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. R. Sawaya, S. Sambashivan, R. Nelson, et al., Nature 447, 453 (2007). https://doi.org/10.1038/nature05695

    Article  ADS  CAS  PubMed  Google Scholar 

  4. D. Eisenberg and M. Jucker, Cell 148, 1188 (2012). https://doi.org/10.1016/j.cell.2012.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. H. Wille, W. Bian, M. McDonald, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 16990 (2009). https://doi.org/10.1073/pnas.0909006106

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. T. P. Knowles, A. W. Fitzpatrick, S. Meehan, et al., Science 318, 1900 (2007).https://doi.org/10.1126/science.1150057

  7. S. Keten and M. J. Buehler, Nano Lett. 8, 743 (2008). https://doi.org/10.1021/nl0731670

    Article  ADS  CAS  PubMed  Google Scholar 

  8. F. S. Ruggeri, J. Adamcik, J. S. Jeong, et al., Angew. Chem., Int. Ed. Engl. 54, 2462 (2015). https://doi.org/10.1002/anie.201409050

    Article  CAS  PubMed  Google Scholar 

  9. V. N. Uversky, FEBS J. 277, 2940 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. B. Anfinsen, Science 181, 223 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. M. Vendruscolo and C. M. Dobson, Philos. Trans. R. Soc., A 363, 433 (2005).

  12. P. G. Wolynes, Philos. Trans. R. Soc., A 363, 453 (2005).

  13. J. C. Rochet and P. T. Lansbury, Jr., Curr. Opin. Struct. Biol. 10, 60 (2000).

  14. T. R. Jahn, S. E. Radford, FEBS J. 272 (23), 5962 (2005). https://doi.org/10.1111/j.1742-4658.2005.05021.x

    Article  CAS  PubMed  Google Scholar 

  15. V. Daggett and A. R. Fersht, Trends Biochem. Sci. 28, 18 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. A. R. Fersht, Proc. Natl. Acad. Sci. U. S. A. 97, 1525 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. E. Radford, C. M. Dobson, and P. A. Evans, Nature 358, 302 (1992),

    Article  ADS  CAS  PubMed  Google Scholar 

  18. D. Baram and A. Yonath, FEBS Lett. 579, 948 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. T. M. Phan and J. D. Schmit. Biophys. J. 121 (15), 2931 (2022). https://doi.org/10.1016/j.bpj.2022.06.031

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. V. N. Uversky and A. L. Fink, Biochim. Biophys. Acta 1698, 131 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. J. K. Freundt and W. A. Linke, J. Appl. Physiol. 126, 1474 (2019). https://doi.org/10.1152/japplphysiol.00865.2018

    Article  CAS  PubMed  Google Scholar 

  22. I. M. Vikhlyantsev and Z. A. Podlubnaya, Biophys. Rev. 9, 189 (2017). https://doi.org/10.1007/s12551-017-0266-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. K. Kim and T. C. Keller III, J. Cell Biol. 156, 101 (2002). https://doi.org/10.1083/jcb.200107037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. G. Bobylev, O. V. Galzitskaya, R. S. Fadeev, et al., Biosci. Rep. 36, e00334 (2016). https://doi.org/10.1042/BSR20160066

  25. E. I. Yakupova, I. M. Vikhlyantsev, L. G. Bobyleva, et al., J. Biomol. Struct. Dyn. 36, 2237 (2018). https://doi.org/10.1080/07391102.2017.1348988

    Article  CAS  PubMed  Google Scholar 

  26. A. G. Bobylev, E. I. Yakupova, L. G. Bobyleva, et al., Mol. Biol. (Moscow) 54, 578 (2020). https://doi.org/10.1134/S0026893320040044

    Article  CAS  Google Scholar 

  27. A. G. Bobylev, E. I. Yakupova, L. G. Bobyleva, et al., Int. J. Mol. Sci. 24, 1056 (2023). https://doi.org/10.3390/ijms24021056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. R. Krebs, G. L. Devlin, and A. M. Donald, Biophys. J. 96, 5013 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. H. H. J. de Jongh, T. Groneveld, and J. de Groot, J. Dairy Sci. 84, 562 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. M. R. H. Krebs, E. H. C. Bromley, S. S. Rogers, and A. M. Donald, Biophys. J. 88, 2013 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. M. B. Borgia, A. A. Nickson, J. Clarke, M. J. Hounslow, J. Am. Chem. Soc. 135, 6456 (2013). https://doi.org/10.1021/ja308852b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Borgia, K. R. Kemplen, M. B. Borgia, et al., Nat. Commun. 6, 8861 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. H. Lu, B. Isralewitz, A. Krammer, et al., Biophys. J. 75, 662 (1998). https://doi.org/10.1016/S0006-3495(98)77556-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. Waeytens, J. Mathurin, A. Deniset-Besseau, et al., Analyst 146, 132 (2021). https://doi.org/10.1039/d0an01545h

    Article  ADS  CAS  PubMed  Google Scholar 

  35. E. C. Eckels, S. Haldar, R. Tapia-Rojo, et al., Cell Rep. 27, 1836 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. A. Rivas-Pardo, E. C. Eckels, I. Popa, et al., Cell Rep. 14, 1339 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Kumar and J. Walter, Aging 3, 803 (2011). https://doi.org/10.18632/aging.100362

    Article  PubMed  PubMed Central  Google Scholar 

  38. J. Gsponer and M. Vendruscolo, Protein Pept. Lett. 13, 287 (2006). https://doi.org/10.2174/092986606775338407

    Article  CAS  PubMed  Google Scholar 

  39. T. Eichner and S. E. Radford, Mol. Cell. 43 , 8 (2011). https://doi.org/10.1016/j.molcel.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  40. K. W. Tipping, P. van Oosten-Hawle, E. W. Hewitt, and S. E. Radford, Trends Biochem. Sci. 40, 719 (2015). https://doi.org/10.1016/j.tibs.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  41. A. K. Buell, A. Dhulesia, D. A. White, et al., Angew. Chem., Int. Ed. Engl. 51, 5247 (2012). https://doi.org/10.1002/anie.201108040

    Article  CAS  PubMed  Google Scholar 

  42. A. J. Baldwin, T. P. Knowles, G. G. Tartaglia, et al., J. Am. Chem. Soc. 133, 14160 (2011). https://doi.org/10.1021/ja2017703

    Article  CAS  PubMed  Google Scholar 

  43. E. Gazit, Angew. Chem., Int. Ed. Engl. 41, 257 (2002).https://doi.org/10.1002/1521-3773(20020118)41:2<257::aid-anie257>3.0.co;2-m

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 22-24-00805.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Bobylev.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

Additional information

Translated by E. Puchkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobyleva, L.G., Uryupina, T.A., Timchenko, M.A. et al. The Pathway of Amyloid Aggregation of Titin. BIOPHYSICS 68, 1085–1091 (2023). https://doi.org/10.1134/S0006350923060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350923060039

Keywords:

Navigation