Skip to main content
Log in

Application of Basic Isotope Equations to Describe the Dynamics of Microbiological Processes: Deuterium Redistribution

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Basic isotope dynamics equations based on maintaining deuterium equilibrium were used to analyze the dynamics of nitrite-dependent anaerobic methane oxidation (NDAMO) in two laboratory experiments with different initial substrate concentrations and deuterium isotope variables. Notably, the initial amount of water in a closed vessel was reduced by a factor of about 2.8 in the second experiment. According to the model, methane was completely consumed, while nitrite ions were still present in excessive amounts at the end of the first experiment and methane was present, while nitrite ions were completely exhausted at the end of the second experiment. Concentrations of the substrates containing a single deuterium atom (СН4 and NH\(_{4}^{ + }\)), the product (Н2О), and the biomass of anaerobic methanotrophic (ANME) microorganisms (C5H7NO2) were taken as isotope variables in the model. Stoichiometric reaction equations were derived to describe the redistribution of deuterium between the reaction substrates, product (water), and biomass. Isotope fractionation was shown to proceed in the course of a microbiological reaction in water. As a result, the substrates become enriched in deuterium, while water and the biomass become depleted of deuterium. The fractionation process ended after t ≥ 17 h in the first experiment, which was accompanied by a slight drop in deuterium in the biomass and water. In the second experiment, fractionation ended after t ≥ 140 h, the deuterium content decreased significantly in both water and the biomass, and its decrease depended on the initial concentration of deuterium-containing water. This was due to dilution of the water in the vessel with deuterium-depleted water generated in the NDAMO process. The paper additionally summarizes the results of modeling the dynamics of 11 biological processes in a long-term study, in which stable carbon isotopes have mainly been measured. Isotope fractionation factors used in the simulation were described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. E. M. Galimov, Carbon Isotopes in Oil and Gas Geology (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  2. H. Craig, Geochim. Cosmochim. Acta 12, 133 (1957).

    Article  ADS  Google Scholar 

  3. J. W. C. Rayleigh, Philos. Mag. 42, 493 (1896).

    Article  Google Scholar 

  4. A. Mariotti, J. C. Germon, P. Hubert, et al., Plant Soil 62, 413 (1981).

    Article  Google Scholar 

  5. L. Melander and W. H. Saunders, Reaction Rates of Isotopic Molecules (Wiley, New York, 1980; Mir, Moscow, 1983).

  6. S. Bakkaloglu, D. Lowry, R. E. Fisher, et al., Waste Manage. 132, 162 (2021).

    Article  Google Scholar 

  7. T. Holler T., G. Wegener, K. Knittel, et al., Environ. Microbiol. Rep. 1, 370 (2009).

    Article  Google Scholar 

  8. V. A. Vavilin and S. V. Rytov, Chemosphere 134, 417 (2015).

    Article  ADS  Google Scholar 

  9. V. A. Vavilin, L. Y. Lokshina, and S. V. Rytov, Isot. Environ. Health Stud. 58, 44 (2022).

    Article  Google Scholar 

  10. V. A. Vavilin, Env. Dyn. Global Clim. Change 12 (2), 51 (2021). https://doi.org/10.17816/edgcc58932

  11. D. J. Batstone, J. Keller, I. Angelidaki, et al., Anaerobic Digestion Model No. 1 (ADM1) (IWA Press, Padstow, Cornwall, 2002).

    Book  Google Scholar 

  12. Y. Liu, Appl. Microbiol. Biotechnol. 73, 1241 (2007).

    Article  Google Scholar 

  13. V. A. Vavilin and V. B. Vasil’ev, Mathematical Modeling of Biological Wastewater Treatment Processes with Activated Sludge (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  14. O. Rasigraf, C. Vogt, H. H. Richnow, et al., Geochim. Cosmochim. Acta 89, 256 (2012).

    Article  ADS  Google Scholar 

  15. V. A. Vavilin and S. V. Rytov, Antonie van Leeuwenhoek 104, 1097 (2013).

    Article  Google Scholar 

  16. A. A. Raghoebarsing, A. Pol, K. T. van de Pas-Schoonen, et al., Nature 440, 918 (2006).

    Article  ADS  Google Scholar 

  17. K. F. Etwig, M. K. Butler, D. Le Paslier, et al., Nature 464, 543 (2010).

    Article  ADS  Google Scholar 

  18. M. F. Costa Gomes and J.-P. Grolier, Phys. Chem. Chem. Phys. 3, 1047 (2001).

    Article  Google Scholar 

  19. M. Knox, P. D. Quay, and D. Wilbur, Geophys. Res. 97 (C12), 20335 (1992).

    Article  ADS  Google Scholar 

  20. N. A. D. Waser, P. J. Harrison, B. Nielsen, et al., Limnol. Oceanogr. 43, 215 (1998).

    Article  ADS  Google Scholar 

  21. V. A. Vavilin, S. V. Rytov, and L. Y. Lokshina, Ecol. Modell. 279, 45 (2014).

    Article  Google Scholar 

  22. G. Vidal-Gavilan, A. Folch, N. Otero, et al., Appl. Geochem. 32, 153 (2013).

    Article  ADS  Google Scholar 

  23. J. Grossin-Debattista, Doctoral Dissertation (Universite Bordeaux-1, Bordeaux, 2011). http://ori-oai.ubordeaux1.fr/pdf/2011/GROSSIN-DEBATTISTA_JULIEN_2011.pdf.

  24. V. A. Vavilin and S. V. Rytov, Isot. Environ. Health Stud. 53, 135 (2017).

    Article  Google Scholar 

  25. S. Feisthauer, C. Vogt, J. Modrzynski, et al., Geochim. Cosmochim. Acta 75, 1173 (2011).

    Article  ADS  Google Scholar 

  26. V. A. Vavilin, S. V. Rytov, N. Shim, and C. Vogt, Isot. Environ. Health Stud. 52, 185 (2016).

    Article  Google Scholar 

  27. R. Conrad, M. Noll, P. Claus, et al., Biogeosciences 8, 795 (2011)

    Article  ADS  Google Scholar 

  28. V. Vavilin, S. Rytov, and R. Conrad, Ecol. Modell. 363, 81 (2017).

    Article  Google Scholar 

  29. P. Galand., K. Yrjala, and R. Conrad, Biogeosciences 7, 3893 (2010).

    Article  ADS  Google Scholar 

  30. V. A. Vavilin, S. V. Rytov, and L. Y. Lokshina, Isot. Environ. Health Stud. 54, 475 (2018).

    Article  Google Scholar 

  31. V. A. Vavilin, S. V. Rytov, and L. Y. Lokshina, Ecol. Modell. 386, 59 (2018).

    Article  Google Scholar 

  32. C. Deusner, T. Holler, G. L. Arnold, et al., Earth Planet. Sci. Lett. 399, 61 (2014).

    Article  ADS  Google Scholar 

  33. V. A. Vavilin, L. Y. Lokshina, and S. V. Rytov, Water Sci. Technol. 79, 2056 (2019).

    Article  Google Scholar 

  34. L. Y. Lokshina, V. A. Vavilin, Y. Litti, et al., Water Resour. 46, S110 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.S. Brezgunov for providing helpful advice on how to describe the dynamics of stable isotope fractionation and D.S. Remizov for proposing the method to estimate the stoichiometric coefficient in the chemical equations used.

Funding

This work was supported by a state agreement with the Institute of Water Problems (no. FMWZ-2022-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vavilin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: NDAMO, nitrite-dependent anaerobic methane oxidation; ANME, anaerobic methanotrophic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavilin, V.A., Lokshina, L.Y. Application of Basic Isotope Equations to Describe the Dynamics of Microbiological Processes: Deuterium Redistribution. BIOPHYSICS 67, 931–942 (2022). https://doi.org/10.1134/S0006350922060240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922060240

Keywords:

Navigation