Skip to main content
Log in

Formal Mathematical Description of Intelligence Concept in a Model Problem on the Influence of Observations on Quantum Processes

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

An attempt to mathematically formalize the problem of intelligence causes difficulties, if only because there is no single definition for intelligence adopted by all psychologists. In this work, this problem is addressed in the following way: through highlighting the essential features of the informal definitions of human intelligence that have been given by expert psychologists it is conducive to put forward an abstract mathematical description of intelligence. Analogies between the problem of intelligence and the problem of quantum mechanical measurements are found, and then the solution to a model problem on the influence of observations on a process of quantum tunneling of particles through a potential barrier is given. Within the framework of the quantum mechanical approach with a non-Hermitian Hamiltonian, a system of differential equations, which formally reflect the concept of intelligence, is formulated, and its analytical solution is presented. On the basis of the obtained solution of the model problem, this paper discusses the question of what phenomena and processes can accompany a process of the realization of intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. R. L. Gregory, The Oxford Companion to the Mind (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  2. V. A. Namiot and L. Yu. Shchurova, Biophysics (Moscow) 63, 825 2027 (2018).

  3. V. Namiot and L. Shchurova, NeuroQuantology 17 (9), 1 (2017).

    Article  Google Scholar 

  4. A. Binet and T. Simon, Ann. Psychol. 11, 191 (1905).

    Article  Google Scholar 

  5. R. J. Sternberg, in Handbook of Intelligence, Ed. by R. J. Sternberg (Cambridge Univ. Press, Cambridge, 2000), pp. 3–15.

    Book  Google Scholar 

  6. L. S. Gottfredson, J. Cognitive Educ. Psychol. 4, 23 (2004).

    Article  Google Scholar 

  7. J. Slatter, Assessment of Children Cognitive Foundations and Applications (Sattler, San Diego, 2018).

    Google Scholar 

  8. D. K. Simonton, in Human Intelligence: Historical Influences, Current Controversies, Teaching Resources, Ed. by J. A. Plucker (2003). https://intelltheory.com/simonton_interview.shtml.

  9. S. Legg and M. Hutter, Minds Mach. 17, 391 (2007).

    Article  Google Scholar 

  10. B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977).

    Article  ADS  Google Scholar 

  11. R. J. Cook, Phys. Scr., T 21, 49 (1988).

    Article  ADS  Google Scholar 

  12. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990).

    Article  ADS  Google Scholar 

  13. O. Hosten, M. T. Rakher, J. T. Barreiro, et al., Nature (London) 439, 949 (2006).

    Article  ADS  Google Scholar 

  14. P. Facchi, Z. Hradil, G. Krenn, et al., Phys. Rev. A 66, 012110 (2002).

    Article  ADS  Google Scholar 

  15. B. Kaulakys and V. Gontis, Phys. Rev. A 56, 1131 (1997).

    Article  ADS  Google Scholar 

  16. A.G. Kofman and G. Kurizki, Nature (London) 405, 546 (2000).

    Article  ADS  Google Scholar 

  17. K. Koshino and A. Shimizu, Phys. Rep. 412, 191 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  18. V. A. Namiot and L. Y. Shchurova, Int. J. Mod. Phys. B 31, 1750069 (2017).

    Article  ADS  Google Scholar 

  19. S. Lipinski and H. Lipinski, WO Patent No. 2014/189799 A9 (2014).

  20. V. I. Vysotskii and A. A. Kornilova, Nuclear Transmutation of Stable and Radioactive Isotopes in Biological Systems (Mir, Moscow, 2003).

  21. I. Prigogine and I. Stengers, Order out of Chaos: Man’s New Dialogue with Nature (Heinemann, London, 1984).

    Google Scholar 

  22. V. L. Ginzburg, Phys.–Usp. 50, 332 (2007).

  23. G. Gamow, Z. Phys. 51, 204 (1928).

    Article  ADS  Google Scholar 

  24. H. A. Bethe, Rev. Mod. Phys. 9, 161 (1937).

    Article  Google Scholar 

  25. L. Rosenfeld, Cosmology, Fusion and Other Matters: George Gamow Memorial Volume (Colorado Assoc. Univ. Press, Boulder, 1972).

    Google Scholar 

  26. V. F. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930).

    Article  ADS  Google Scholar 

  27. P. Exner, Open Quantum Systems and Feynman Integrals (Springer, Dordrecht, 1985).

    Book  MATH  Google Scholar 

  28. C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).

    Article  ADS  Google Scholar 

  29. L. Yu. Shchurova and V. N. Murzin, J. Russ. Laser Res. 42, 632 (2021).

    Article  Google Scholar 

  30. L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964).

    Google Scholar 

  31. J. A. Chowen and L. M. Garcia-Segura, Prog. Neurobiol. 184, 101720 (2020).

    Article  Google Scholar 

  32. V. F. Mukhanov, Physical Foundations of Cosmology (Cambridge Univ. Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  33. R. Feinman, Quantum Electrodynamics (URSS, Moscow, 2009) [in Russian].

    Google Scholar 

  34. V. N. Murzin and L. Yu. Shchurova, J. Russ. Laser Res. 41 (6), 597 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Shchurova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

Additional information

Vladimir Abramovich Namiot, an outstanding scientist and remarkable person, passed away early this year. This article is part of the work that V. Namiot and I had carried out recently but did not have time to prepare the materials for publication together. I express my sincere gratitude to Vladimir Abramovich Namiot for the long years of productive joint work. L. Shchurova

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchurova, L.Y., Namiot, V.A. Formal Mathematical Description of Intelligence Concept in a Model Problem on the Influence of Observations on Quantum Processes. BIOPHYSICS 67, 1046–1054 (2022). https://doi.org/10.1134/S0006350922060227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922060227

Keywords:

Navigation