Skip to main content
Log in

Possible Phase Effects in the Dispersion of a Globular Protein in the Temperature Range of the Native State

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A qualitative approach to the mechanism of occurrence of phase transitions and equilibria of various types in the dispersions of a globular protein in the temperature range, where the structural state of the protein is considered native, is proposed. It is assumed that two types of native conformers N and N* are possible, having stability maxima in different temperature ranges, between which there is a reversible structural transition. It is also assumed that there are two types of protein intermediates I and I*, coexisting with conformers N and N* in the corresponding temperature ranges. The issue of finding possible ways of transition from the thermodynamics of (pre)denaturation transitions of protein to the thermodynamics of condensation phase transitions of the entire dispersion as a whole, with the formation of phase boundaries, is discussed. It is assumed that intermediates I and I* can participate in “liquid–liquid” (L–L) phase transitions with the formation of microphases (clusters) from them in metastable equilibrium with the solution phase consisting of native conformers. The onset of phase transitions depends both on the microenvironment of protein macromolecules in the dispersion and on the properties of protein intermediates. On phase diagrams constructed in the coordinates “temperature–entropy” {T, S} and “chemical potential of the conformers–temperature"{μi, T}, the zones of metastable states N ↔ I and N* ↔ I*, the upper and lower critical solution temperatures, and the zone of supercritical phase transitions are determined. The conditions under which the metastable equilibria N ↔ I and N* ↔ I* are the result of phase transitions of an L–L type are discussed. It is established that the maximum stability of the protein is achieved precisely in the region of critical phase transitions. This region is homogeneous and is characterized as a zone of reduced thermodynamic stability of the protein dispersion as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. V. Finkel’shtein and A. B. Ptitsyn, Lectures on the Protein Physics (Knizhnyi Dom “Universitet,” Moscow, 2002) [in Russian].

  2. V. N. Uversky and A. V. Finkelstein, Biomolecules 9, 842 (2019).

    Article  Google Scholar 

  3. P. G. Vekilov, J. Phys.: Condens. Matter 24, 193101 (2012).

    ADS  Google Scholar 

  4. A. V. Fonin, A. L. Darling, I. M. Kuznetsova, et al., Cell Mol. Life Sci. 75, 3907 (2018).

    Article  Google Scholar 

  5. E. L. Baba, T. J. Kim, D. B. Rogers, et al., J. Phys. Chem. B 120, 12040 (2016).

    Article  Google Scholar 

  6. A. A. M. Andre and E. Spruijt, Int. J. Mol. Sci. 21, 5908 (2020).

    Article  Google Scholar 

  7. A. A. Hyman, C. A. Weber, and F. Julicher, Annu. Rev. Cell Dev. Biol. 30, 39 (2014).

    Article  Google Scholar 

  8. P. H. von Hippel and T. Schleich, in Structure and Stability of Biological Macromolecules, Ed. by S. N. Timasheff and G. D. Fasman (Marcel-Dekker, New York, 1969; Mir, Moscow, 1973), p. 417.

  9. J. J. Grigsby, H. W. Blanch, and J. M. Prausnitz, Biophys. Chem. 91, 231 (2001).

    Article  Google Scholar 

  10. O. Galkin and P. G. Vekilov, Proc. Natl. Acad. Sci. U. S. A. 97, 6277 (2000).

    Article  ADS  Google Scholar 

  11. S. P. Rozhkov and A. S. Goryunov, Biophys. Chem. 151, 22 (2010).

    Article  Google Scholar 

  12. D. Bulone, V. Martorana, and P. L. San Biagio, Biophys. Chem. 91, 61 (2001).

    Article  Google Scholar 

  13. S. P. Rozhkov, Aktual. Vopr. Biol. Fiz. Khim. 6, 330 (2021).

    Google Scholar 

  14. A. A. Tager, Physical Chemistry of Polymers (Nauchnyi Mir, Moscow, 2007) [in Russian].

    Google Scholar 

  15. G. L. Dignon, W. Zheng, Y. C. Kim, and J. Mittal, ACS Cent. Sci. 5, 821 (2019).

    Article  Google Scholar 

  16. Y. Wang and O. Annunziata, J. Phys. Chem. B 111, 1222 (2006).

    Article  Google Scholar 

  17. O. Matsarskaia, M. K. Braun, F. Roosen-Runge, et al., J. Phys. Chem. B 120, 7731 (2016).

    Article  Google Scholar 

  18. M. Adrover, G. Martorell, S. R. Martin, et al., J. Mol. Biol. 417, 413 (2012).

    Article  Google Scholar 

  19. H. N. Hollowell, S. S. Younvanich, S. L. McNevin, et al., J. Biochem. Mol. Biol. 40, 205 (2007).

    Google Scholar 

  20. B. M. Britt, J. Biochem. Mol. Biol. 37, 394 (2004).

    Google Scholar 

  21. R. L. Tuinstra, F. C. Peterson, S. Kutlesa, et al., Proc. Natl. Acad. Sci. U. S. A. 105, 5057 (2008).

    Article  ADS  Google Scholar 

  22. L. Bian, D. Wu, and W. Hu, Biomed. Chromatogr. 28, 295 (2014).

    Article  Google Scholar 

  23. S. P. Rozhkov and A. I. Käiväräinen, Biofizika 30, 772 (1986).

    Google Scholar 

  24. S. P. Rozhkov, A. S. Goryunov, and M. Yu. Krupnova, Trudy Karel. Nauchn. Tsentr Ross. Akad. Nauk, Ser. Eksp. Biol., No. 11, 38 (2020).

  25. I. P. Bazarov, Thermodynamics (Vysshaya Shkola, Moscow, 1983) [in Russian].

    Google Scholar 

  26. M. Tsytlonok and L. S. Itzhaki, Arch. Biochem. Biophys. 531, 14 (2013).

    Article  Google Scholar 

  27. C. Royer and R. Winter, Curr. Opin. Colloid Interface Sci. 16, 568 (2011).

    Article  Google Scholar 

  28. P. L. Privalov, Biofizika 32, 742 (1987).

    Google Scholar 

  29. C. Alfano, D. Sanfelice, S. R. Martin, et al., Nat. Commun. 8, 15428 (2017).

    Article  ADS  Google Scholar 

  30. S. P. Rozhkov, Biofizika 46, 53 (2001).

    Google Scholar 

  31. P. W. Atkins, Physical Chemistry (Oxford Univ. Press, Oxford, 1978; Mir, Moscow, 1980).

  32. S. A. Hawley, Biochemistry 10, 2436 (1971).

    Article  Google Scholar 

  33. L. Smeller, F. Meersman, and K. Heremans, Biochim. Biophys. Acta 1764, 497 (2006).

    Article  Google Scholar 

  34. S. Cinar, H. Cinar, H. S. Chan, and R. Winter, J. Am. Chem. Soc. 141, 7347 (2019).

    Article  Google Scholar 

  35. V. K. Semenchenko, Zh. Fiz. Khim. 36 (1), 15 (1962).

    Google Scholar 

  36. D. A. Fridrikhsberg, Course of Colloid Chemistry (Khimiya, Leningrad, 1984) [in Russian].

    Google Scholar 

  37. S. P. Rozhkov, J. Cryst. Growth 273, 266 (2004).

    Article  ADS  Google Scholar 

  38. A. Cacciuto and D. Frenkel, J. Phys. Chem. B 109, 6587 (2005).

    Article  Google Scholar 

  39. S. P. Rozhkov and A. S. Goryunov, Biophysics (Moscow) 51, 196 (2006).

    Article  Google Scholar 

  40. J. Juarez, S. G. Lope, and A. Cambon, J. Phys. Chem. B 113, 10521 (2009).

    Article  Google Scholar 

  41. S. P. Rozhkov, Biophysics (Moscow) 50, 211 (2005).

    Google Scholar 

Download references

Funding

The study was carried out by State Order, project no. FMEN-2022-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Rozhkov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: PT, phase transitions; N, native; D, denatured; PT L–L, phase transitions liquid–liquid; LCDT, lower critical solution temperature; UCDT, upper critical solution temperature.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhkov, S.P., Goryunov, A.S. Possible Phase Effects in the Dispersion of a Globular Protein in the Temperature Range of the Native State. BIOPHYSICS 67, 876–883 (2022). https://doi.org/10.1134/S0006350922060215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922060215

Keywords:

Navigation