Skip to main content
Log in

Interaction of Serum Albumin and Fatty Acid Molecules with Graphenes of Shungite Carbon Nanoparticles in Aqueous Dispersion Assessed by Raman Spectroscopic Analysis of Water in the High Wavenumber Region

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Raman spectroscopy was used to analyze the positions of extrema, amplitudes, and widths of the main Raman spectral lines in the wavenumber range 3200–3600 cm–1 attributed to stretching vibrations of a network of hydrogen bonds with a change in the concentration of bovine serum albumin in the range of 0.01–10 mg/mL. The variations of these parameters for protein in the presence and absence of fatty acids were compared; the effect of shungite carbon nanoparticles on these variations was studied. It was found that the stability of the hydrogen bond system of water depended significantly nonlinearly on the protein concentration; in the protein concentration range of 0.1–0.3 mg/mL, stabilization was maximal and decreased with both an increase and decrease in concentration. Destabilization of the hydrogen bond system with an increase in protein concentration might be associated with its conformation and/or aggregation. The changes depended both on the ligand state of bovine serum albumin (the presence of fatty acids) and the influence of shungite carbon nanoparticles. In the presence of shungite carbon nanoparticles, the hydrogen bond network was maintained in a more homogeneous and loosened state over the entire range of protein concentrations, both with and without fatty acids. The data obtained indicate the important role of water in the mechanisms of interaction between protein molecules as well as between graphenes of shungite carbon nanoparticles and the protein surface in the region of their binding centers for fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. J. Liu, L. Cui, and D. Losic, Acta Biomater. 9, 9243 (2013).

    Article  Google Scholar 

  2. Y. Ni, F. Zhanga, and S. Kokot, Anal. Chim. Acta 769, 40 (2013).

    Article  Google Scholar 

  3. H. Sun, A. Zhao, N. Gao, et al., Angew. Chem., Int. Ed. 54, 7176 (2015).

    Article  Google Scholar 

  4. B. S. Gully, J. Zou, G. Cadby, et al., Nanoscale 4, 5321 (2012).

    Article  ADS  Google Scholar 

  5. N. N. Rozhkova, A. V. Gribanov, and M. A. Khodorkovskii, Diamond Relat. Mater. 16, 2104 (2007).

    Article  ADS  Google Scholar 

  6. E. F. Sheka and N. A. Popova, Phys. Chem. Chem. Phys. 15, 13304 (2013).

    Article  Google Scholar 

  7. E. F. Sheka, N. N. Rozhkova, K. Holderna-Natkaniec, and I. Natkaniec, Nanosyst.: Phys., Chem., Math. 5, 659 (2014).

    Google Scholar 

  8. E. F. Sheka and N. N. Rozhkova, Int. J. Smart Nano Mater., No. 5, 1 (2014).

  9. N. N. Rozhkova and S. S. Rozhkov, RF Patent No. 2448899 (2012).

  10. S. P. Rozhkov and A. S. Goryunov, Russ. J. Gen. Chem. 83, 2585 (2013).

    Article  Google Scholar 

  11. S. P. Rozhkov and A. S. Goryunov, Trudy Karel. Nauchn. Tsentra Ross. Akad. Nauk, Ser. Eksp. Biol., No. 12, 38 (2018).

  12. N. N. Rozhkova, Russ. J. Gen. Chem. 83, 2676 (2013).

    Article  Google Scholar 

  13. X. Liu, C. Yan, and K. L. Chen, Environ. Sci. Technol. 53, 8631 (2019).

    Article  ADS  Google Scholar 

  14. B. Sun, Y. Zhang, W. Chen, et al., Environ. Sci. Technol. 52, 7212 (2018).

    Article  ADS  Google Scholar 

  15. S. P. Rozhkov and A. S. Goryunov, Trudy Karel. Nauchn. Tsentra Ross. Akad. Nauk, Ser. Eksp. Biol., No. 5, 33 (2017).

  16. A. Goryunov, S. Rozhkov, and N. Rozhkova, Eur. Biophys. J. 49, 85 (2020).

    Article  Google Scholar 

  17. L. E. Masson, C. M. O’Brien, I. J. Pence, et al., Analyst 143, 6049 (2018).

    Article  ADS  Google Scholar 

  18. N. N. Rozhkova, S. P. Rozhkov, and A. S. Goryunov, in Carbon Nanomaterials Sourcebook. Graphene, Ed. by K. D. Slatter (CRC, Boca Raton, 2016), Vol. 1, pp. 151–174.

    Google Scholar 

  19. A. Michnik, K. Michalik, and Z. Drzazga, J. Therm. Anal. Calorim. 80, 399 (2005).

    Article  Google Scholar 

  20. S. M. Baschenko and L. S. Marchenko, Semicond. Phys., Quantum Electron. Optoelectron. 14, 77 (2011).

    Article  Google Scholar 

  21. B. S. Razbirin, N. N. Rozhkova, E. F. Sheka, et al., J. Exp. Theor. Phys. 118, 735 (2014).

  22. Y. Xu, T. Watermann, H.-H. Limbach, et al., Phys. Chem. Chem. Phys. 16, 9327 (2014).

    Article  Google Scholar 

  23. A. C. Ferrari and J. Robertson, Phil. Trans. R. Soc. 362, 2477 (2004).

    Article  ADS  Google Scholar 

  24. Y. Maeda and H. Kitano, Spectrochim. Acta, Part A 51, 2433 (1995).

    Article  ADS  Google Scholar 

  25. M. Unal and O. Akkus, J. Biomed. Opt. 23, 015008 (2018).

    Article  ADS  Google Scholar 

  26. S. Burikov, S. Dolenko, T. Dolenko, et al., Mol. Phys. 108, 739 (2010).

    Article  ADS  Google Scholar 

  27. G. D. Fullerton, K. M. Kanal, and I. L. Cameron, Cell Biol. Int. 30, 86 (2006).

    Article  Google Scholar 

  28. I. A. Chaban, M. N. Rodnikova, and V. V. Zhakova, Biofizika 41, 293 (1996).

    Google Scholar 

  29. A. P. Zhukovskii, N. V. Rovnov, and A. I. Khaloimov, Biofizika 29, 586 (1984).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Experimental data were obtained using the equipment of the Core Facility of the FRC Karelian Research Center of the Russian Academy of Sciences

Funding

The study was carried out within the framework of the State Order, project nos. FMEN-2022-0006 and АААА-А18-118020690131-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Rozhkov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: ShC, shungite carbon graphenes; GO, graphene oxide; BSA, bovine serum albumin; FA, fatty acids; RLS, Raman light scattering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhkov, S.P., Goryunov, A.S., Kolodey, V.A. et al. Interaction of Serum Albumin and Fatty Acid Molecules with Graphenes of Shungite Carbon Nanoparticles in Aqueous Dispersion Assessed by Raman Spectroscopic Analysis of Water in the High Wavenumber Region. BIOPHYSICS 67, 888–894 (2022). https://doi.org/10.1134/S0006350922060203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922060203

Keywords:

Navigation