Skip to main content
Log in

Contribution of Nuclear Membrane Phospholipids to the Formation of Electrokinetic Potential

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The electrokinetic potential of isolated cell nuclei obtained from wheat seedlings irradiated with nonionizing electromagnetic radiation of extremely high frequencies has been studied. Electrokinetic potential is an important factor in many biological processes and, perhaps, plays an important role in the formation of the response of biological organisms to electromagnetic waves. An increase in the absolute values of the electrokinetic potential of isolated cell nuclei of wheat seedlings from –7.7 to –131.6 mV in the electric field gradient under the influence of electromagnetic radiation of extremely high frequencies, in the frequency range of 46.0–50.3 GHz, was shown. Unidirectional changes in the electrokinetic potential under the influence of such radiation have been revealed; it was explained by an increase in the potential difference between the nuclear membrane and the nuclear matrix. It was also shown that there were sharp differences between the electrokinetic potential of isolated cell nuclei treated with electromagnetic radiation of extremely high frequencies under in vivo and in vitro conditions. It was found that the magnitude of changes in the electrokinetic potential of nuclei induced by exposure to electromagnetic radiation of extremely high frequencies under in vivo conditions far exceeded the magnitude of the electrokinetic potential of isolated nuclei treated with electromagnetic radiation of the same frequency under in vitro conditions; this confirmed the prolonged effect of electromagnetic radiation of extremely high frequencies. The authors discuss the modulation of the electrokinetic potential depending on the change in the difference between the content of anionic phospholipids in the nuclear membrane and the soluble nuclear fraction arising under the effect of electromagnetic radiation of extremely high frequencies, which leads to a change in the surface charge of the nuclear membrane, the electrokinetic potential of the nuclei, and the formation of a more compact double electric layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. J. R. Jauchem, Int. J. Hyg. Environ. Health 211, 1 (2009).

    Article  Google Scholar 

  2. C. N. Nicolaz, M. Zhadobov, F. Desmots, et al., Bioelectromagnetics 30, 365 (2009).

    Article  Google Scholar 

  3. Non-Ionizing Radiation. Part 2: Radiofrequency Electromagnetic Fields (WHO/IARC, Geneva, 2011), vol. 102, pp. 1–6.

  4. A. B. Miller, M. E. Sears, L. Morgan, et al., Front. Public Health 13, 10 (2019).

    Google Scholar 

  5. P. Pogam, Y. Page, D. Habauzit, et al., Sci. Rep. 9, 9343, (2019).

    Article  ADS  Google Scholar 

  6. American Cancer Res. 1.800.227.2345 Radiofrequency (RF) Radiation Last Med. Rev.: June 1 (2020).

  7. Y. Chen, F. Müller, I. Rieu, and P. Winter, Plant Reprod. 29, 21 (2016).

    Article  Google Scholar 

  8. Zh. Zhong, T. Furuya, K. Ueno, et al., Int. J. Mol. Sci. 21, 486 (2020).

    Article  Google Scholar 

  9. G.-Ch. Yuan, Wiley Interdisc. Rev.: Syst. Biol. Med. 4, 297 (2012).

    Google Scholar 

  10. M. Iwasaki and J. Paszkowski, EMBO J. 33, 1987 (2014).

    Article  Google Scholar 

  11. C. S. Pikaard and Sh. O. Mittelsten, Cold Spring Harbor Perspect. Biol. 6, a019315 (2014).

    Article  Google Scholar 

  12. T. Stuart, S. R. Eichten, J. Cahn, et al., eLife 5, e20777 (2016).

    Article  Google Scholar 

  13. N. S. M. Manik, S. Shi, J. Mao, et al., Int. J. Genomics 2015, 10 (2015).

    Article  Google Scholar 

  14. L. A. Minasbekyan, Biol. Zh. Armenii, No. 3 (70), 52 (2018).

    Google Scholar 

  15. S. Honary and F. Zahir, Trop. J. Pharm. Res. 12, 255 (2013).

    Google Scholar 

  16. H. L. Kutschera, P. Chaoa, M. Deshmukha, et al., Int. J. Pharm. 402, 64 (2010).

    Article  Google Scholar 

  17. N. T. Huynh, C. Passirani, P. Saulnier, and J. P. Benoit, Int. J. Pharm. 379, 201 (2009).

    Article  Google Scholar 

  18. L. Rabinovich-Guilatt, P. Couvreur, G. Lambert, et al., Chem. Phys. Lipids 131, 1 (2004).

    Article  Google Scholar 

  19. M. A. Balayan, P. O. Vardevanyan, A. Z. Pepoyan, et al., Biol. Membr. 14, 506 (1997).

    Google Scholar 

  20. I. A. Avagyan, A. V. Nerkararyan, L. A. Minasbekyan, and S. G. Nanagulyan, Mikol. Fitopatol. 45 (6), 77 (2011).

    Google Scholar 

  21. P. O. Vardevanyan, A. V. Nerkararyan, and L. A. Mina-sbekyan, and Ts. K. Kaltakhchyan, in Proceedings of the International Conference (Michurinsk, 2008), vol. 2, p. 107.

  22. P. O. Vardevanyan, A. V. Nerkararyan, and M. A. Shahinyan, J. Exp. Biol. Agric. Sci. 1, 39 (2013).

    Google Scholar 

  23. L.A. Minasbekyan, V. Pohrebennik, K. Przystupa, and O. Kohan, in Wirtualne Sympozjum PTZE (Warszawa, 2020), pp. 240–242.

    Google Scholar 

  24. G. Blobel and V.R. Potter, Science 154, 1662 (1966)

    Article  ADS  Google Scholar 

  25. L. A. Minasbekyan, M. A. Parsadanyan, S. A. Gonyan, and P. O. Vardevanyan, Fiziol. Rast. 49, 280 (2002).

    Google Scholar 

  26. L. A. Minasbekyan and J. A. Teixeira da Silva, in Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, Ed. by J. A. Teixeira da Silva (Global Sci. Book Ed., Japan, 2006), vol. I, pp. 454–459.

  27. R. R. Vardapetyan, S. A. Gonyan, and N. A. Davtyan, Biol. Nauki 10, 30 (1988).

    Google Scholar 

  28. S. A. Gonyan, Candidate’s Dissertation in Biophysics (Yerevan State Univ., Yerevan, 1993).

  29. S. A. Gonyan, L. A. Minasbekyan, A. V. Nerkararyan, et al., Biol. Zh. Armenii 54 (3–4), 227 (2002).

    Google Scholar 

  30. L. A. Minasbekyan, Zh. V. Yavroyan, M. R. Darbinyan, and P. O. Vardevanyan, Fiziol. Rast. 51, 784 (2004).

    Google Scholar 

  31. M. V. Kurik and L. S. Martsenyuk, Fiz. Soznan. Zhizni, Kosmol. Astrofiz. 2, 13 (2011).

    Google Scholar 

  32. L. Minasbekyan, V. Kalantaryan, and P. Vardevanyan, in Brilliant Light in Life and Material Sciences, Ed. by V. Tsakanov and H. Wiedemann (Springer, Dordrecht, 2007), pp. 199–203.

    Google Scholar 

  33. A. Vian, E. Davids, M. Gendraud, and P. Bonnet, BioMed Res. Int. 2016, 1830262 (2016).

    Article  Google Scholar 

  34. S. T. Qureshi, S. A. Memon, A. R. Abassi, et al., Saudi J. Biol. Sci. 24, 883 (2017).

    Article  Google Scholar 

  35. M. Simko and M. O. Mattsson, J. Environ. Res. Public Health 16, 3406 (2019).

    Article  Google Scholar 

  36. L. A. Minasbekyan and P. O. Vardevanyan, in International Conference on Plant Genetics (Novosibirsk, 2021), p. 150.

  37. M. Racuciu, C. Iftode, and S. Miclaus, Rom. J. Phys. 60, 603 (2015).

    Google Scholar 

  38. J. H. Vossen, A. Abd-El-Haliem, E. F. Fradin, et al., Plant J. 62, 224 (2010).

    Article  Google Scholar 

  39. G. G. Badalyan and A. A. Shaginyan, Biofizika 33, 92 (1988).

    Google Scholar 

  40. N. I. Marukovich, A. M. Nesterenko, and Yu. A. Ermakov, Biol. Membr. 31, 401 (2014).

    Google Scholar 

  41. E. Donath and V. Pastushenko, Bioelectrochem. Bioenerg. 7, 31 (1980).

    Article  Google Scholar 

  42. D. W. Van de Vosse, Y. Wan, R. Wozniak, and J. D. Aitchinson, Wiley Interdiscip. Rev.: Syst. Biol. Med. 3, 147 (2011).

    Google Scholar 

  43. G. B. Skamrova, A. O. Lantushenko, Yu. G. Shckorbatov, and M. P. Evstigneev, Biochem. Biophys. 1, 22 (2013).

    Google Scholar 

  44. M. L. Pall, Curr. Chem. Biol. 10, 74 (2016).

    Article  Google Scholar 

  45. B. Ranty, D. Aldon, V. Cotelle, et al., Front. Plant Sci. 7, 327 (2016).

    Article  Google Scholar 

  46. V. V. Kuvichkin, Bioelectrochemistry 58, 3 (2002).

    Article  Google Scholar 

  47. L. Minasbekyan, H. Badalyan, and P. Vardevanyan, in Brilliant Light in Life and Material Sciences, Ed. by V. Tsakanov and H. Wiedemann (Springer, Dordrecht, 2007), pp. 205–211.

    Google Scholar 

  48. X.-J. Du, J.-L. Wang, Sh. Iqbal, et al., Biomater. Sci. 6, 642 (2018).

    Article  Google Scholar 

  49. M. Kumari, N. Sharma, R. Manchanda, et al., Sci. Rep. 11, 3824 (2021).

    Article  ADS  Google Scholar 

  50. A. Wood, R. Mate, and K. Karipidis, J. Exposure Sci. Environ. Epidemiol. 31, 606 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Minasbekyan.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: EMR EHF, electromagnetic radiation of extremely high frequencies; EKP, electrokinetic potential; PL, phospholipids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minasbekyan, L.A., Nerkararyan, A.V. Contribution of Nuclear Membrane Phospholipids to the Formation of Electrokinetic Potential. BIOPHYSICS 67, 921–930 (2022). https://doi.org/10.1134/S0006350922060148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922060148

Keywords:

Navigation