Skip to main content
Log in

A Model of the Broca–Sulzer Effect

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The Broca–Sulzer phenomenon is one of the aspects of the problem of subjective deformation of the real world, the mystery of consciousness. The Broca–Sulzer effect is manifested in the excess of a subjective brightness at short durations of the stimulus. Despite a long history of the study, the effect has no satisfactory theory of the mechanism of its occurrence. A model for the formation of the Broca–Sulzer effect based on the theory of a tremor modulation signal in the visual system was proposed in the work. The possibility of using the Broca–Sulzer effect as a marker and tool for estimating the functional state, adaptation, and maladaptation to changing environmental conditions is also demonstrated. Understanding the nature of the phenomenon has an exceptional theoretical and practical significance for different fields of knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. Broca and D. Sulzer, J. Physiol. Pathol. Gen. 4, 632 (1902).

    Google Scholar 

  2. R. M. Meshcherskii, Broca–Sulzer Effect (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  3. S. M. Berman and A. L. Stewart, Biol. Cybern. 34, 171 (1979).

    Article  Google Scholar 

  4. D. M. Eagleman, J. E. Jacobson, and T. J. Sejnowski, Nature 428 (6985), 854 (2004).

    Article  ADS  Google Scholar 

  5. A. L. Yarbus, The Role of Eye Movements in the Process of Vision (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  6. R. Knight, C. Mazzi, and S. Savazzi, Exp. Brain Res. 233, 3527 (2015).

    Article  Google Scholar 

  7. T. Jaeger and C. Kraemer, Perceptual Motor Skills 51, 945 (1980).

    Article  Google Scholar 

  8. A. Gorea and C. W. Tyler, Proc. Natl. Acad. Sci. U. S. A. 110, 1330 (2013).

    Article  ADS  Google Scholar 

  9. H. Rieiro, S. Martinez-Conde, A. P. Danielson, et al., Proc. Natl. Acad. Sci. U. S. A. 109, 19828 (2012).

    Article  ADS  Google Scholar 

  10. V. Kalnysh and A. Shvets, Ukr. J. Occup. Health 3 (48), 10 (2016).

    Article  Google Scholar 

  11. S. I. Lyapunov, J. Opt. Technol. 85, 100 (2018).

    Article  Google Scholar 

  12. S. I. Lyapunov, J. Opt. Technol. 84, 16 (2017).

    Article  Google Scholar 

  13. S. I. Lyapunov, J. Opt. Technol. 84, 613 (2017a).

    Article  Google Scholar 

  14. S. I. Lyapunov, J. Opt. Technol. 81, 349 (2014).

    Article  Google Scholar 

  15. G. J. Barton, S. Nagshineh, and K.H. Ruddock, Biol. Cybern. 27, 189 (1977).

    Article  Google Scholar 

  16. L. G. Ungerleider and M. Mishkin, in Analysis of Visual Behavior, Ed. by D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield (MIT Press, Cambridge, 1982), pp. 549–586.

    Google Scholar 

  17. M. A. Goodale and A. D. Milner, Trends Neurosci. 15, 20 (1992).

    Article  Google Scholar 

  18. J. J. Nassi and E. M. Callaway, Nat. Rev. Neurosci. 10, 360 (2009).

    Article  Google Scholar 

  19. A. M. Derrington and P. Lennie, J. Physiol. 3 (57), 219 (1984).

    Article  Google Scholar 

  20. D. H. Hubel and T. N. Wiesel, J. Comp. Neurol. 146, 421 (1972).

    Article  Google Scholar 

  21. E. Kaplan and R. M. Shapley, Proc. Natl. Acad. Sci. U. S. A. 83, 2755 (1986).

    Article  ADS  Google Scholar 

  22. W. H. Merigan and J. H. R. Maunsell, Ann. Rev. Neurosci. 16, 369 (1993).

    Article  Google Scholar 

  23. M. S. Livingston and D. H. Hubel, Science 240, 740 (1988).

    Article  ADS  Google Scholar 

  24. D. J. Calderone, M. J. Hoptman, A. Martinez, et al., Cereb. Cortex 23, 1849 (2013).

    Article  Google Scholar 

  25. E. Kaplan and E. Benardete, Progr. Brain Res. 134, 17 (2001).

    Article  Google Scholar 

  26. E. H. F. de Haan, S. R. Jackson, and T. Schenk, Cortex 98, 1 (2018).

    Article  Google Scholar 

  27. E. Freud, M. Behrmann, and J. C. Snow, Open Mind: Discoveries Cognit. Sci. 4, 40 (2020).

    Google Scholar 

  28. I. I. Shoshina and Yu. E. Shelepin, Mechanisms of Global and Local Analysis of Visual Information in Schizophrenia (VVM, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  29. I. I. Shoshina, I. S. Sosnina, K. A. Zelenskiy, et al., Biophysics (Moscow) 65, 681 (2020).

    Article  Google Scholar 

  30. I. I. Shoshina, Y. E. Shelepin, E. A. Vershinina, and K. O. Novikova, Hum. Physiol. 41, 251 (2015).

    Article  Google Scholar 

  31. I. I. Shoshina, Y. E. Shelepin, S. A. Konkina, et al., Neurosci. Behav. Physiol. 44, 244 (2014).

    Article  Google Scholar 

Download references

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. I. Lyapunov or I. I. Shoshina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

Additional information

Translated by A. Barkhash

Abbreviations: TMS, tremor modulation signal; GC, ganglion cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyapunov, S.I., Shoshina, I.I. A Model of the Broca–Sulzer Effect. BIOPHYSICS 67, 1039–1045 (2022). https://doi.org/10.1134/S0006350922060136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922060136

Keywords:

Navigation