Skip to main content
Log in

Activity and Catalytic Characteristics of Rat Liver Mitochondrial Succinate Dehydrogenase under Moderate Hypothermia

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We have previously shown that short-term moderate (30°C) hypothermia contributed to a significant increase in the intensity of free radical processes and changes in a number of bioenergetic parameters of mitochondria, while its prolongation for 3 h led to their normalization, which might be associated with the modulation of the activity and catalytic properties of succinate dehydrogenase. This study showed that moderate hypothermia, especially prolonged for 3 h, significantly increased the rate of succinate dehydrogenase catalysis and affected its dependence on concentration and temperature. The modulation of succinate dehydrogenase activity during hypothermia occurred due to changes in its kinetic and thermodynamic characteristics, of which the most significant contribution to the efficiency of enzyme catalysis was made by the parameter Vmax, maximum speed. These changes might play an important role in preserving the energy-producing function of mitochondria and reducing the intensity of free radical processes in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. D. Brown, H. Brugger, and J. Boyd, N. Engl. J. Med. 367, 1930 (2012).

    Article  Google Scholar 

  2. Z. Sun, J. E. Dalton, D. Yang, et al., Anesthesiology 122, 276 (2015).

    Article  Google Scholar 

  3. X. N. Tang and M. A. Yenari, Ageing Res. Rev. 9, 61 (2010).

    Article  Google Scholar 

  4. K. Soreide, Injury 45, 647 (2014).

    Article  Google Scholar 

  5. M. Andresen, J. T. Gazmuri, A. Marin., et al., Scand. J. Trauma, Resusc. Emerg. Med. 23, 2 (2015).

    Article  Google Scholar 

  6. N. Alva, J. Palomeque, and T. Carbonell, Oxid. Med. Cell. Longevity 2013, 10 (2013).

    Article  Google Scholar 

  7. L. V. Usenko and A. V. Tsarev, Obshch. Reanimatol. 5, 21 (2009).

    Article  Google Scholar 

  8. E. Z. Emirbekov and N. K. Klichkhanov, Free-Radical Processes and State of Membranes in Hypothermia (Yuzhn. Fed. Univ., Rostov-on-Don, 2011) [in Russian].

    Google Scholar 

  9. V. V. Zinchuk and S. V. Hlutkin, Asian J. Pharm., Nurs. Med. Sci. 3, 55 (2015).

    Google Scholar 

  10. V. Yankovskaya, R. Horsefield, S. Tornroth, et al., Science 299, 700 (2003).

    Article  ADS  Google Scholar 

  11. K. H. Vanova, M. Kraus, J. Neuzil, and J. Rohlena, Redox Rep. 25, 26 (2020).

    Article  Google Scholar 

  12. V. V. Afanas’ev, E. R. Barantsevich, and T. P. Vishnevetskaya, The Alphabet of Neurocytoprotection (STELLA, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  13. R. A. Khalilov, S. I. Khizrieva, A. M. Dzhafarova, and V. R. Abdullaev, Bull. Exp. Biol. Med. 169, 29 (2020).

  14. R. A. Khalilov, A. M. Dzhafarova, S. I. Khizrieva, and V. R. Abdullaev, Tsitologiya 91, 536 (2019).

    Article  Google Scholar 

  15. D. H. Lowry, J. Biol. Chem. 193, 265 (1951).

    Article  Google Scholar 

  16. M. I. Prokhorova, Methods of Biochemical Studies: Lipid and Energy Metabolism (Leningr. Gos. Univ., Leningrad, 1982) [in Russian].

    Google Scholar 

  17. M. T. D. Mayakhi and N. K. Klichkhanov, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk 14, 273 (2012).

    Google Scholar 

  18. N. G. Volzhina, Doctoral Dissertation in Biology (Rostov. State Univ., Rostov-on-Don, 1992).

  19. M. E. Nunnally, R. Jaeschke, G. J. Bellingan, et al., Crit. Care Med. 39, 1113 (2011).

    Article  Google Scholar 

  20. D. Danzl, in Wilderness Medicine, Ed. by P. S. Auerbach (Elsevier, Philadelphia, 2012), pp. 116–142.

    Google Scholar 

  21. O. Karcioglu and N. Koyuncu, Vasc. Med. Surg. 6, 1 (2018).

    Article  Google Scholar 

  22. N. Alva, T. Carbonell, and J. Palomeque, J. Therm. Biol. 29, 259 (2004).

    Article  Google Scholar 

  23. V. P. Skulachev, A. V. Bogachev, and F. O. Kasparinskii, Membrane Bioenergetics (Mosk. Gos. Univ., Moscow, 2012) [in Russian].

    Google Scholar 

  24. P. Hochachka and G. Somero, Biochemical Adaptation (Oxford University Press, Oxford, 2002).

    Google Scholar 

  25. E. L. Mills, K. A. Pierce, M. P. Jedrychowski, et al., Nature 560, 102 (2018).

    Article  ADS  Google Scholar 

  26. E. T. Chouchani, V. R. Pell, E. Gaude, et al., Nature 515, 431 (2014).

    Article  ADS  Google Scholar 

  27. B. Moosavi, X. Zhu, W.-C. Yang, and G.-F. Yang, Biol. Chem. 401, 319 (2020).

    Article  Google Scholar 

  28. M. Erecinska, M. Thoresen, and I. A. Silver, J. Cereb. Blood Flow Metab. 23, 513 (2003).

    Article  Google Scholar 

  29. T. Oda, K. Shimizu, A. Yamaguchi, et al., Cryobiology 65, 104 (2012).

    Article  Google Scholar 

  30. G. Cecchini, Annu. Rev. Biochem. 72, 77 (2003).

    Article  Google Scholar 

  31. G. Tong, S. Endersfelder, L. M. Rosenthal, et al., Brain Res. 1504, 74 (2013).

    Article  Google Scholar 

  32. H. K. Hsu, P. L. Shao, K. L. Tsai, et al., J. Mol. Endocrinol. 34, 433 (2005).

    Article  Google Scholar 

  33. D. Wang and J. Zhang, Mol. Med. Rep. 11, 1759 (2015).

    Article  Google Scholar 

  34. K. E. Cullen and K. D. Sarge, J. Biol. Chem. 272, 1742 (1997).

    Article  Google Scholar 

  35. N. I. Fedotcheva, M. N. Kondrashova, E. G. Litvinova, et al., Biophysics (Moscow) 63, 743 (2018).

    Article  Google Scholar 

  36. M. Salvi, N. A. Morrice, and A. M. Brunati, FEBS Lett. 581, 5579 (2007).

    Article  Google Scholar 

  37. R. Acin-Perez, I. Carrascoso, F. Baixauli, et al., Cell Metab. 19, 1020 (2014).

    Article  Google Scholar 

  38. F. Valsecchi, L. S. Ramos-Espiritu, J. Buck, et al., Physiology (Bethesda) 28, 199 (2013).

    Google Scholar 

  39. A. Bezawork-Geleta, J. Rohlena, L. Dong, et al., Trends Biochem. Sci. 42, 312 (2017).

    Article  Google Scholar 

  40. A. K. Nath, J. H. Ryu, Y. N. Jin, et al., Cell Rep. 10, 694 (2015).

    Article  Google Scholar 

  41. J. Rutter, D. R. Winge, and J. D. Schiffman, Mitochondrion 10, 393 (2010).

    Article  Google Scholar 

  42. R. A. Khalilov, S. I. Khizrieva, A. M. Dzhafarova, V. R. Abdulaev, Biol. Membr. 38, 351 (2021).

    Google Scholar 

  43. A. P. Shepelev, Biofizika 23, 465 (1977).

    Google Scholar 

  44. A. M. Kalandarov, Z. I. Radzhabova, S. A. Zabelinskii, et al., Zh. Evol. Biokhim. Fiziol. 54, 81 (2018).

    Google Scholar 

  45. Z. G. Radzhabova, S. A. Zabelinskiia, M. A. Chebotareva, et al., Biol. Membr. 37, 134 (2020).

    Google Scholar 

  46. S. Gonzalez, A. M. Nervi, R. O. Peluffo, and R. R. Brenner, Lipids 18, 7 (1983).

    Article  Google Scholar 

  47. J. J. Van den Berg, J. A. Op den Kamp, and B. H. Lubin, Biochemistry 32, 4962 (1993).

    Article  Google Scholar 

  48. L. S. Yaguzhinskii, Yu. A. Skorobogatova, and S. V. Nesterov, Biophysics (Moscow) 62, 415 (2017).

  49. L. D. Lukyanova, E. L. Germanova, and Y. I. Kirova, in The Adaptation Biology and Medicine, Vol. 6: Cell Adaptations and Challenges, Ed. by P. Wang, C. H. Kuo, N. Takeda, and P. K. Singal (Narosa, New Delhi, 2011), pp. 251–277.

    Google Scholar 

  50. D. M. Stroka, T. Burkhardt, and I. Desballerts, FASEB J. 15, 2445 (2001).

    Article  Google Scholar 

  51. A. King, M. A. Selak, and E. Gottlieb, Oncogene 25, 4675 (2006).

    Article  Google Scholar 

  52. S. L. Vargas, I. Toma, J. J. Kang, et al., J. Am. Soc. Nephrol. 20, 1002 (2009).

    Article  Google Scholar 

  53. E. Sh. Abieva, Izv. Akad. Nauk Azerb., Ser. Biol. Med. Nauki 70, 55 (2015).

    Google Scholar 

  54. L. D. Luk’yanova, Fiziol. Zh. 59, 141 (2013).

    Article  Google Scholar 

  55. A. V. Smirnov, O. B. Nesterova, R. V. Golubev, et al., Succinate-Containing Dialysis Solutions in the Practice of Hemodialysis (Levsha, St. Petersburg, 2014) [in Russian].

    Google Scholar 

  56. E. V. Ekusheva, Eksp. Klin. Farmakol. 81, 37 (2018).

    Google Scholar 

  57. J. N. Bazil, D. A. Beard, and K. C. Vinnakota, Biophys. J. 110, 962 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Task, project no. FZNZ-2020-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Dzhafarova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. During the study, all the norms and rules for performing experimental work using laboratory animals were observed (Directive 2010/63/EU of the Council of the European Community on the Protection of Animals Used for Experimental and Other Scientific Purposes).

Additional information

Translated by E. Puchkov

Abbreviations: ETC, electron transport chain; SDH, succinate dehydrogenase; FAD, flavin adenine dinucleotide; ROS, reactive oxygen species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilov, R.A., Dzhafarova, A.M. & Abdullaev, V.R. Activity and Catalytic Characteristics of Rat Liver Mitochondrial Succinate Dehydrogenase under Moderate Hypothermia. BIOPHYSICS 67, 948–959 (2022). https://doi.org/10.1134/S0006350922060094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922060094

Keywords:

Navigation