Skip to main content
Log in

Review of Mathematical Models Describing the Mechanical Motion in a DNA Molecule

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Several mechanical models that reproduce the DNA structure were considered. Evolution was described in more detail for the mechanical model proposed for a DNA molecule by Englander, who suggested that nonlinear effects can play an important role in DNA dynamics. The paper discusses the mechanical model of a DNA molecule that takes into account the rotational motion of nitrogenous bases around the sugar-phosphate backbone and the influence of external periodic action on the dynamics of the molecule. When the model is numerically solved without simplifications, the DNA molecule starts oscillating under periodic external influence, and the specifics of its oscillations depend on its nucleotide sequence. Importantly, this mathematical model makes it possible to calculate the frequency and amplitude of vibrations for a particular DNA site. Calculations show that zones of open states appear more often at gene boundaries and in regions with a predominance of A–T base pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. A. L. B. Pyne, A. Noy, K. H. S. Main, et al., Nat. Commun. 12, 1053 (2021).

    Article  ADS  Google Scholar 

  2. M. Manghi and N. Destainville, Phys. Rep. 631, 1 (2015).

    Article  ADS  Google Scholar 

  3. A. Basu, D. G. Bobrovnikov, Z. Qureshi, et al., Nature 589, 462 (2021).

    Article  ADS  Google Scholar 

  4. S. W. Englander, N. R. Kallenbach, A. J. Heeger, et al., Proc. Natl. Acad. Sci. U. S. A. 77, 7222 (1980).

    Article  ADS  Google Scholar 

  5. L. V. Yakushevich, Nonlinear Physics of DNA (Izhevsk. Inst. Komp. Issled., Izhevsk, 2007) [in Russian].

  6. F. Hase and M. Zacharias, Nucleic Acids Res. 44, 7100 (2016).

    Google Scholar 

  7. S. Yomosa, Phys. Rev. A 27, 2120 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Yomosa, Phys. Rev. A 30, 474 (1984).

    Article  ADS  Google Scholar 

  9. S. Homma and S. Takeno, Progr. Theor. Phys. 72, 679 (1984).

    Article  ADS  Google Scholar 

  10. L. V. Yakushevich, Phys. Lett. A 136, 413 (1989).

    Article  ADS  Google Scholar 

  11. M. I. Drobotenko, S. S. Dzhimak, A. A. Svidlov, et al., Biophysics 63, 177 (2018).

    Article  Google Scholar 

  12. G. Gaeta, Phys. Lett. A 143, 227 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  13. G. Gaeta, Phys. Lett. A 168, 383 (1992).

    Article  ADS  Google Scholar 

  14. L. V. Yakushevich, A. V. Savin, and L. I. Manevitch, Phys. Rev. E 66, 16614 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. A. Basov, M. I. Drobotenko, A. A. Svidlov, et al., Molecules 25, 3753 (2020).

    Article  Google Scholar 

  16. A. A. Svidlov, M. I. Drobotenko, A. A. Basov, et al., Phys. Wave Phenom. 29, 180 (2021).

    Article  ADS  Google Scholar 

  17. A. A. Svidlov, M. I. Drobotenko, A. A. Basov, et al., Int. J. Mol. Sci. 22, 7873 (2021).

    Article  Google Scholar 

  18. A. A. Svidlov, M. I. Drobotenko, A. A. Basov, et al., Entropy 23, 1446 (2021).

    Article  ADS  Google Scholar 

  19. S. Dzhimak, A. Svidlov, A. Elkina, et al., Int. J. Mol. Sci. 23, 4428 (2022).

    Article  Google Scholar 

  20. F. Hase and M. Zacharias, Nucl. Acids Res. 44, 7100 (2016).

    Google Scholar 

  21. M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755 (1989).

    Article  ADS  Google Scholar 

  22. T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E 47, 684 (1993).

    Article  ADS  Google Scholar 

  23. A. Wildes, N. Theodorakopoulos, J. Valle-Orero, et al., Phys. Rev. Lett. 106, 48101 (2011).

    Article  ADS  Google Scholar 

  24. A. Wildes, L. Khadeeva, W. Trewby, et al., J. Phys. Chem. B 119, 4441 (2015).

    Article  Google Scholar 

  25. G. Gaeta, C. Reiss, and M. Peyrard, Riv. Nuovo Cimento 17, 1 (1994).

    Article  Google Scholar 

  26. G. Weber, Europhys. Lett. 73, 806 (2006).

    Article  ADS  Google Scholar 

  27. M. Peyrard, S. Cuesta-Lopez, and D. Angelov, J. Phys.: Condens. Matter 21, 34103 (2009).

    Google Scholar 

  28. M. Barbi, S. Lepri, M. Peyrard, et al., Phys. Rev. E 68, 61909 (2003).

    Article  ADS  Google Scholar 

  29. T. Dauxois and M. Peyrard, Phys. Rev. E 51, 4027 (1995).

    Article  ADS  Google Scholar 

  30. T. Dauxois, Phys. Rev. A 159, 390 (1991).

    Google Scholar 

  31. S. Zdravković, J. Nonlinear Math. Phys. 18, 463 (2011).

    Google Scholar 

  32. 32. T. Kawahara, J. Phys. Soc. Jpn. 35, 1537 (1973).

    Article  ADS  Google Scholar 

  33. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, London, 1982).

    MATH  Google Scholar 

  34. S. Zdravković and M. V. Satarić, Phys. Rev. E 73, 021905 (2006).

    Article  ADS  Google Scholar 

  35. A. S. Davydov, Phys. Scripta 20, 387 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. S. Davydov, Solitons in Molecular Systems (Springer, Dordrecht, 1985).

  37. A. V. Savin and O. V. Gendel’man, Polym. Sci., Ser. A 41, 165 (1999).

  38. L. Cruzeiro-Hansson, Phys. Rev. A 45, 4111 (1992).

    Article  ADS  Google Scholar 

  39. A. A. Gogolin, V. I. Mel’Nikov, and E. I. Rashba, J. Exp. Theor. Phys. 42, 254 (1975).

    Google Scholar 

  40. D. E. Ingber, J. Cell Sci. 116, 1397 (2003).

    Article  Google Scholar 

  41. Yu. D. Nechipurenko, R. V. Polozov, and D. Yu. Nechipurenko, Mathematics. Computer. Education, Ed. by G. Yu. Riznichenko (Izhevsk. Inst. Komp. Issled., Izhevsk, 2006) [in Russian].

  42. S. K. Nomidis, M. Caraglio, M. Laleman, et al., Phys. Rev. E 100, 22402 (2019).

    Article  ADS  Google Scholar 

  43. S. K. Nomidis, E. Skoruppa, E. Carlon, et al., Phys. Rev. E 99, 032414 (2019).

    Article  ADS  Google Scholar 

  44. S. K. Nomidis, J. Hooyberghs, G. Maglia et al., J. Phys.: Condens. Matter 30, 304001 (2018).

    Google Scholar 

  45. G. Torrellas and E. MacIa, Phys. Lett. A 376, 3407 (2012).

    Article  ADS  Google Scholar 

  46. A. Zeida, M. R. MacHado, P. D. Dans, et al., Phys. Rev. E 86, 21903 (2012).

    Article  ADS  Google Scholar 

  47. A. K. Mazur and M. Maaloum, Phys. Rev. Lett. 112, 68104 (2014).

    Article  ADS  Google Scholar 

  48. M. Zoli, J. Phys.: Condens. Matter 29, 225101 (2017).

    ADS  Google Scholar 

  49. A. K. Mazur, Phys. Rev. E 95, 62417 (2017).

    Article  ADS  Google Scholar 

  50. T. Pal and S. M. Bhattacharjee, Phys. Rev. E 93, 52102 (2016).

    Article  ADS  Google Scholar 

  51. A. Noy and R. Golestanian, Phys. Rev. Lett. 109, 228101 (2012).

    Article  ADS  Google Scholar 

  52. A. K. Mazur, Phys. Rev. Lett. 116, 158101 (2016).

    Article  ADS  Google Scholar 

  53. A. K. Mazur, Phys. Rev. Lett. 111, 179801 (2013).

    Article  ADS  Google Scholar 

  54. G. Altan-Bonnet, A. Libchaber, and O. Krichevsky, Phys. Rev. Lett. 90, 138101 (2003).

    Article  ADS  Google Scholar 

  55. O.-C. Lee, J.-H. Jeon, and W. Sung, Phys. Rev. E 81, 21906 (2010).

    Article  ADS  Google Scholar 

  56. D.S. Sanchez, H. Qu, D. Bulla, et al., Phys. Rev. E 87, 22710 (2013).

    Article  ADS  Google Scholar 

  57. O.-C. Lee and W. Sung, Phys. Rev. E 85, 021902 (2012).

    Article  ADS  Google Scholar 

  58. B. S. Alexandrov, L. T. Wille, K. O. Rasmussen, et al., Phys. Rev. E 74, 050901 (2006).

    Article  ADS  Google Scholar 

  59. S. Park, O.-C. Lee, X. Durang, et al., J. Korean Phys. Soc. 78, 408 (2021).

    Article  ADS  Google Scholar 

  60. D. Salerno, A. Tempestini, and I. Mai, Phys. Rev. Lett. 109, 118303 (2012).

    Article  ADS  Google Scholar 

  61. H. Qu, Y. Wang, C.-Y. Tseng, et al., Phys. Rev. X 1, 1 (2011).

    Google Scholar 

  62. J. Wang, H. Qu, and G. Zocchi, Phys. Rev. E 88, 32712 (2013).

    Article  ADS  Google Scholar 

  63. A. L. B. Pyne, A. Noy, K. H. S. Main, et al., Nat. Commun. 12, 1053 (2021).

    Article  ADS  Google Scholar 

  64. S. S. Dzhimak, M. I. Drobotenko, A. A. Basov, et al., Dokl. Biochem. Biophys. 483, 359 (2018).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Kuban Science Foundation (project no. N-21.1/11), a state grant to support young Russian researchers, candidates of sciences from the President of the Russian Federation (project no. MK-2366.2022.1.4), the Russian Foundation for Basic Research (project no. 19- 44-230026), and a state agreement with the Southern Research Center (no. 122020100351-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Bezhenar.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezhenar, M.V., Elkina, A.A., Caceres, J.L. et al. Review of Mathematical Models Describing the Mechanical Motion in a DNA Molecule. BIOPHYSICS 67, 867–875 (2022). https://doi.org/10.1134/S0006350922060021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922060021

Keywords:

Navigation