Skip to main content
Log in

Inhibitory Effect of Aqueous Extract from Yerba Mate (Ilex paraguariensis) on the Process of Lipid Peroxidation of Liposomal Membranes

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of aqueous extract from yerba mate (Ilex paraguariensis) on Fe2+-induced lipid peroxidation in phospholipid liposomal membranes was investigated. The process of lipid peroxidation in liposomes was explored based on the kinetic curves of chemiluminescence reactions in the presence of coumarin C-525. With increasing concentration of aqueous extract from yerba mate in the liposome suspension, a rise in the time period within which the “slow flash” of chemiluminescence reached its maximum value and a decrease in its intensity were observed. This indicates a decrease in the oxidation rate of Fe2+ and a decrease in the rate of lipid radical formation, respectively. Similar results were obtained after addition of the classical radical inhibitors butylhydroxytoluene and trolox to liposomes. However, unlike radical inhibitors, a further increase in the concentration of aqueous extract from mate in the liposomal suspension (more than 2.5 μg of dry plant raw material/ml) was accompanied by a gradual decrease in the time period within which the slow flash of chemiluminescence reached its maximum value, which was typical of the action of iron chelating agents (EDTA and deferoxamine) and caused by a decreased time of Fe2+ oxidation to the critical concentration. It can be supposed that biologically active substances in the composition of aqueous extract from mate exhibit both radical scavenging activity and iron binding ability. The effects of some polyphenolic compounds from the composition of aqueous extracts from mate (quercetin, rutin, chlorogenic acid, and caffeic acid) on Fe2+‑induced liposome chemiluminescence were studied. It has been established that quercetin in a liposome-based model system acted as radical inhibitor. Our study showed that rutin, caffeic acid, and chlorogenic acid exhibit a mixed type of action, they can act as radical scavengers and iron-binding agents. Thus, inhibition of Fe2+-induced lipid peroxidation in biological membranes may be one of the mechanisms for the antioxidant effects of yerba mate observed in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. Gawron-Gzella, J. Chanaj-Kaczmarek, and J. Cielecka-Piontek, Nutrients 13, 3706 (2021).

    Article  Google Scholar 

  2. A. T. Valduga, I. L. Goncalves, E. Magri, and J. R. Delalibera Finzer, Food Res. Int. 120, 478 (2019).

    Article  Google Scholar 

  3. S. Dudonne, X. Vitrac, P. Coutiere, et al., J. Agric. Food Chem. 57, 1768 (2009).

    Article  Google Scholar 

  4. C. Anesini, S. Turner, L. Cogoi, and R. Filip, LWT – Food Sci. Technol. 45, 299 (2012).

    Article  Google Scholar 

  5. Yu. O. Teselkin, I. V. Babenkova, L. A. Pavlova, et al., Biophysics 66, 125 (2021).

    Article  Google Scholar 

  6. E. Rząsa-Duran, A. Kryczyk-Poprawa, D. Drabicki, et al., Antioxidants (Basel) 11, 371 (2022).

    Article  Google Scholar 

  7. G. R. Schinella, G. Troiani, V. Davila, et al., Biochem. Biophys. Res. Commun. 269, 357 (2000).

    Article  Google Scholar 

  8. M. Valko, D. Leibfritz, J. Moncol, et al., Int. J. Biochem. Cell Biol. 39, 44 (2007).

    Article  Google Scholar 

  9. K. Jomova and M. Valko, Toxicology 283, 65 (2011).

    Article  Google Scholar 

  10. H. Sies and D. P. Jones, Nat. Rev. Mol. Cell Biol. 21, 363 (2020).

    Article  Google Scholar 

  11. Y. A. Hajam, R. Rani, and S. Y. Ganie, Cells 11, 552 (2022).

    Article  Google Scholar 

  12. E. Gammella, S. Recalcati, and G. Cairo, Oxid. Med. Cell. Longevity 2016, 8629024 (2016).

    Article  Google Scholar 

  13. E. Driomina, V. Sharov, and Yu. A. Vladimirov, Free Radic. Biol. Med. 15, 239 (1993).

    Article  Google Scholar 

  14. Y. A. Vladimirov, E. V. Proskurnina, and D. Yu. Izmajlov, Biophysics 56, 1055 (2011).

    Article  Google Scholar 

  15. S. Batzri and D. E. Korn, Biochim. Biophys. Acta 298, 1015 (1973).

    Article  Google Scholar 

  16. Yu. A. Vladimirov and E. V. Proskurnina, Biochemistry (Moscow) 74, 1545 (2009).

    Article  Google Scholar 

  17. K. A. Berte, M. R. Beux, P. K. Spada, et al., J. Agric. Food Chem. 59, 523 (2011).

    Article  Google Scholar 

  18. M. Bojić, V. Simon Haas, D. Sarić, and Z. Maleš, J. Anal. Methods Chem. 2013, 658596 (2013).

    Google Scholar 

  19. G. Jones, S. K. Goswami, H. Kang, et al., Nanomedicine 15, 1341 (2020).

    Article  Google Scholar 

  20. D. Bellotti and M. Remelli, Molecules 26, 3255 (2021).

    Article  Google Scholar 

  21. D. Yu. Yegorov, A. V. Kozlov, O. A. Azizova, and Yu. A. Vladimirov, Free Radic. Biol. Med. 15, 565 (1993).

    Article  Google Scholar 

  22. Z. Cheng and Y. Li, Chem. Rev. 107, 748 (2007).

    Article  Google Scholar 

  23. L. A. Romodin, Acta Nat. 13, 90 (2021).

    Article  Google Scholar 

  24. A. O. Ademosun, G. Oboh, F. Bello, and P. O. Ayeni, J. Evidence-Based Complementary Altern. Med. 21, NP 11 (2016).

  25. Y. Kono, S. Kashine, T. Yoneyama, et al., Biosci. Biotechnol. Biochem. 62, 22 (1998).

    Article  Google Scholar 

  26. T. C. Genaro-Mattos, A. Q. Mauricio, D. Rettori, et al., PloS One 10, e0142402 (2015).

  27. F. Martins, A. J. Suzan, S. M. Cerutti, et al., Br. J. Nutr. 101, 527 (2009).

    Article  Google Scholar 

  28. L. Bravo, R. Mateos, B. Sarria, et al., Fitoterapia 92, 219 (2014).

    Article  Google Scholar 

  29. A. C. Colpo, M. E. de Lima, M. Maya-Lopez, et al., Appl. Physiol. Nutr. Metab. 42, 1172 (2017).

    Article  Google Scholar 

  30. L. F. Gonzalez Arbelaez, J. C. Fantinelli, A. Ciocci Pardo, et al., Food Funct. 7, 816 (2016).

    Article  Google Scholar 

  31. R. L. Matsumoto, D. H. Bastos, S. Mendonca, et al., J. Agric. Food Chem. 57, 1775 (2009).

    Article  Google Scholar 

  32. A. M. Becker, H. P. Cunha, A. C. Lindenberg, et al., Plant Foods Hum. Nutr. 74, 495 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Teselkin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Abbreviations: BAS, biologically active substance; LP, lipid peroxidation; BHT, butylhydroxytoluene (2,6-di-tert-butyl-4-methylphenol).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teselkin, Y.O., Babenkova, I.V., Kochetova, A.A. et al. Inhibitory Effect of Aqueous Extract from Yerba Mate (Ilex paraguariensis) on the Process of Lipid Peroxidation of Liposomal Membranes. BIOPHYSICS 67, 541–548 (2022). https://doi.org/10.1134/S0006350922040194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922040194

Keywords:

Navigation