Skip to main content
Log in

Numerical Modeling of the Work of the Left Ventricle of the Heart in the Circulatory System: The Effects of Changes in the Frequency of Contractions and Apical Myocardial Infarction

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We present a multiscale mathematical model of the pumping function of the left ventricle (LV) of the heart in the circulatory system. The properties of the LV myocardium were described with a new electromechanical model that combines models of the generation and propagation of action potential, electromechanical coupling, and mechanics, including passive and active mechanical stress and finite strain. The left ventricle was considered to be a thick-walled axisymmetric body with a realistic distribution of the muscle fibers within its wall. Blood flow in other heart chambers and blood vessels was represented by a lumped parameter model. We carried out numerical modeling of the effects of the heart rate, partial atrioventricular block, and apical LV infarction on the hemodynamics and geometry of the LV. The calculations showed that the model describes the observed responses of the LV pumping characteristics to these effects. The results allow one to understand how the cell-level peculiarities of the electromechanical coupling in cardiac muscle help the heart to maintain its pumping function in pathologies and to adjust it to the increasing needs during physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. A. Niederer, J. Lumens, and N. A. Trayanova, Nat. Rev. Cardiol. 16, 100 (2019).

    Article  Google Scholar 

  2. M. Peirlinck, F. S. Costabal, J. Yao, et al., Biomech. Model. Mechanobiol. 20, 803 (2021).

    Article  Google Scholar 

  3. N. A. Trayanova, Circ. Res. 108, 113 (2011).

    Article  Google Scholar 

  4. N. A. Trayanova and K. C. Chang, J. Physiol. 594, 2483 (2016).

    Article  Google Scholar 

  5. F. Syomin, A. Osepyan, and A. Tsaturyan, PLoS One 16, e0255027 (2021).

    Article  Google Scholar 

  6. R. R. Aliev and A. V. Panfilov, Chaos, Solitons Fractals 7, 293 (1996).

    Article  ADS  Google Scholar 

  7. K. H. ten Tusscher and A. V. Panfilov, Am. J. Physiol.-Heart Circ. Physiol. 291, H1088 (2006).

  8. F.A. Syomin and A. K. Tsaturyan, J. Theor. Biol. 420, 105 (2017).

    Article  ADS  Google Scholar 

  9. F. A. Syomin and A. K. Tsaturyan, Russ. J. Numer. Anal. Math. Model. 32, 327 (2017).

    Article  Google Scholar 

  10. F. A. Syomin, M. V. Zberia, and A. K. Tsaturyan, Int. J. Numer. Method. Biomed. Eng. 35, e3216 (2019).

    Article  Google Scholar 

  11. G. Joseph, T. Zaremba, M. B. Johansen, et al., Echo Res. Pract. 6, 81 (2019).

    Article  Google Scholar 

  12. L. A.Mulieri, G. Hasenfuss, B. Leavitt, et al., Circulation 85, 1743 (1992).

    Article  Google Scholar 

  13. N. R. Alpert, B. J. Leavitt, F. P. Ittleman, et al., Basic Res. Cardiol. 93 (Suppl. 1), 23 (1998).

    Article  Google Scholar 

  14. K. Wielemborek-Musial, K. Szmigielska, J. Leszczynska, et al., Biomed. Res. Int. 2016, 5607507 (2016).

  15. T. Kerola, A. Eranti, A. L. Aro, et al., JAMA Network Open 2, e194176 (2019).

    Article  Google Scholar 

Download references

Funding

The study was supported by Russian Science Foundation grant no. 20-74-00046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Syomin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Abbreviations: AP, action potential; LV, left ventricle; ODE, ordinary differential equation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syomin, F.A., Khabibullina, A.R. & Tsaturyan, A.K. Numerical Modeling of the Work of the Left Ventricle of the Heart in the Circulatory System: The Effects of Changes in the Frequency of Contractions and Apical Myocardial Infarction. BIOPHYSICS 67, 612–622 (2022). https://doi.org/10.1134/S0006350922040182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922040182

Keywords:

Navigation