Skip to main content
Log in

Functional Magnetic Resonance Spectroscopy Study of Total Glutamate and Glutamine in the Human Visual Cortex Activated by a Short Stimulus

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract—Glutamate+glutamine (Glx) dynamics with 2s time resolution in the human occipital cortex in response to short visual stimulation was studied using functional magnetic resonance spectroscopy (fMRS) at 3 T. The dynamic changes in the Glx level and the BOLD signal were acquired in response to a 3 s flickering checkerboard in the occipital cortex of 25 volunteers. Glx concentration increased at 1 s and 15 s after the stimulus presentation. No correlation between the amplitude of the BOLD response and the change in Glx was found. The time course of changes in the total glutamate+glutamine level after the stimulus does not correspond to the turnover rate of the glutamine-glutamate cycle, but is consistent with the temporal characteristics of the vesicular cycle: the release of glutamate from vesicles and its reuptake. Thus, it can be assumed that the observed dynamics of glutamate and glutamine is not due to metabolic transformations in the neurotransmitter cycle, but due to a change in the mobility of glutamate upon exit from the vesicles and its re-entering back.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. Robinson and C. B. Williams, Clin. Chim. Acta 12, 311 (1965).

    Article  Google Scholar 

  2. P. G. Mullins, H. Chen, J. Xu, et al., Magn. Reson. Med. 60, 964 (2008).

    Article  Google Scholar 

  3. I. Tkač and R. Gruetter, Appl. Magn. Reson. 29, 139 (2005).

    Article  Google Scholar 

  4. M. Garwood and L. DelaBarre, J. Magn. Reson. 153, 155 (2001).

    Article  ADS  Google Scholar 

  5. E. Frias-Martinez et al., in Proc. 16th Scientific Meeting of Int. Soc. for Magnetic Resonance in Medicine (Toronto, 2008), p. 691.

  6. P. O. Wyss, C. Bianchini, M. Scheidegger, et al., Magn. Reson. Med. 80, 452 (2018).

    Article  Google Scholar 

  7. P. Bednařik, I. Tkač, F. Giove, et al., J. Cereb. Blood Flow Metab. 35, 601 (2015).

    Article  Google Scholar 

  8. R. Mekle, S. Kühn, H. Pfeiffer, et al., NMR Biomed. 30, e3672 (2017).

  9. I. Betina Ip, U. E. Emir, A. J. Parker, et al., J. Neurosci. 39, 7968 (2019).

    Article  Google Scholar 

  10. I. Betina Ip, A. Berrington, A. T. Hess, et al., NeuroImage 155, 113 (2017).

    Article  Google Scholar 

  11. N. Lally, P. G. Mullins, M. V. Roberts, et al., Neuroimage 85, 823 (2014).

    Article  Google Scholar 

  12. M. Cleve, A. Gussew, and J. R. Reichenbach, NeuroImage 105, 67 (2015).

    Article  Google Scholar 

  13. A. Gussew, R. Rzanny, M. Erdtel, et al., NeuroImage 49, 1895 (2010).

    Article  Google Scholar 

  14. D. Apšvalka, A. Gadie, M. Clemence, and P. G. Mullins, NeuroImage 118, 292 (2015).

    Article  Google Scholar 

  15. K. Kurcyus, E. Annac, N. M. Hanning, et al., J. Neurosci. 38, 9967 (2018).

    Article  Google Scholar 

  16. N. Lally, P. G. Mullins, M. V. Roberts, et al., NeuroImage 85, 823 (2014).

    Article  Google Scholar 

  17. S. A. Huettel, A. W. Song, and G. McCarthy, Functional Magnetic Resonance Imaging, 3rd ed. (Oxford Univ. Press, New York, 2014).

    Google Scholar 

  18. A. Schousboe, S. Scafidi, L. K. Bak, et al., in Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain (Springer, Cham, 2014), pp. 13–30.

    Google Scholar 

  19. L. K. Bak, A. Schousboe, and H. S. Waagepetersen, J. Neurochem. 98, 641 (2006).

    Article  Google Scholar 

  20. S. Mangia, F. Giove, and M. DiNuzzo, Neurochem. Res. 37, 2554 (2012).

    Article  Google Scholar 

  21. M. C. McKenna, J. Neurosci. Res. 85, 3347 (2007).

    Article  Google Scholar 

  22. S. Mangia, I. Tkač, R. Gruetter, et al., J. Cereb. Blood Flow Metab. 27, 1055 (2007).

    Article  Google Scholar 

  23. R. A. Kauppinen, T. R. M. Pirttila, S. O. K. Auriola, and S. R. Williams, Biochem. J. 298, 121 (1994).

    Article  Google Scholar 

  24. P. G. Mullins, Scand. J. Psychol. 59, 91 (2018).

    Article  Google Scholar 

  25. T. C. Sudhof, Annu. Rev. Neurosci. 27, 509 (2004).

    Article  Google Scholar 

  26. T. Hori and T. Takahashi, Neuron 76, 511 (2012).

    Article  Google Scholar 

  27. D. L. Rothman, H. M. de Feyter, R. A. de Graaf, et al., NMR Biomed. 24, 943 (2011).

    Article  Google Scholar 

  28. D. J. Heeger and D. Ress, Nat. Rev. Neurosci. 3, 142 (2002).

    Article  Google Scholar 

  29. J. M. Chambers, in Statistical Models in S, Ed. by J. M. Chambers and T. J. Hastie (Chapman and Hall, Boca Raton, FL, 1992), pp. 95–144.

    MATH  Google Scholar 

  30. P. E. Menshchikov, N. A. Semenova, T. A. Akhadov, et al., Biophysics 62, 1009 (2017).

    Article  Google Scholar 

  31. J. Near, R. Edden, C. J. Evans, et al., Magn. Reson. Med. 73, 44 (2015).

    Article  Google Scholar 

  32. S. W. Provencher, Magn. Reson. Med. 30, 672 (1993).

    Article  Google Scholar 

  33. M. Z. Goryawala, S. Sheriff, and A. A. Maudsley, NMR Biomed. 29, 1108 (2016).

    Article  Google Scholar 

  34. J. Shen, K. F. Petersen, K. L. Behar, et al., Proc. Natl. Acad. Sci. U. S. A. 96, 8235 (1999).

    Article  ADS  Google Scholar 

  35. L. Hertz and Y. Chen, Front. Integr. Neurosci. 11, 18 (2017).

    Article  Google Scholar 

  36. W. Chen, E. J. Novotny, X. H. Zhu, et al., Proc. Natl. Acad. Sci. U. S. A. 90, 9896 (1993).

    Article  ADS  Google Scholar 

  37. A. V. Tzingounis and J. I. Wadiche, Nat. Rev. Neurosci. 8, 935 (2007).

    Article  Google Scholar 

  38. S. P. Gandhl and C. F. Stevens, Nature 423, 607 (2003).

    Article  ADS  Google Scholar 

  39. J. Y. Sun, X. S. Wu, and L. G. Wu, Nature 417, 555 (2002).

    Article  ADS  Google Scholar 

  40. B. Schaller, R. Mekle, L. Xin, et al., J. Neurosci. Res. 91, 1076 (2013).

    Article  Google Scholar 

  41. Y. Boillat, L. Xin, W. van der Zwaag, and R. Gruetter, J. Cereb. Blood Flow Metab. 40, 488 (2020).

    Article  Google Scholar 

  42. M. H. Baslow, J. Hrabe, and D. N. Guilfoyle, J. Mol. Neurosci. 32, 235 (2007).

    Article  Google Scholar 

  43. A. V. Manzhurtsev, N. A. Semenova, M. V. Ublinskii, et al., Russ. Chem. Bull. 65, 1630 (2016).

    Article  Google Scholar 

  44. D. Attwell, A. M. Buchan, S. Charpak, et al., Nature 468, 232 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out with financial support of Russian Foundation for Basic Research (Grant/Award no. 19-29-10040) and Russian Scientific Foundation (Grant/Award no. 18-1300030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yakovlev.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. The study was approved by the Clinical and Research Institute of Emergency Pediatric Surgery and Trauma Ethics Committee. All participants were informed about the details of the study and provided written informed consent. All procedures were in accordance with the 1964 Helsinki Declaration and its later amendments.

Additional information

Abbreviations: fMRS, functional 1H magnetic resonance spectroscopy; Glu, glutamate; Gln, glutamine; Glx, sum of glutamate and glutamine; BOLD response, blood oxygenation level dependent response; fMRI, functional magnetic resonance imaging; NAA, N-acetylaspartate; tNAA, the sum of N-acetylaspartate and N-acetylaspartylglutamate; Cr, the sum of creatine and osphocreatine; tCho, choline-containing compounds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A., Manzhurtsev, A., Menshchikov, P. et al. Functional Magnetic Resonance Spectroscopy Study of Total Glutamate and Glutamine in the Human Visual Cortex Activated by a Short Stimulus. BIOPHYSICS 67, 265–273 (2022). https://doi.org/10.1134/S0006350922020245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922020245

Keywords:

Navigation