Skip to main content
Log in

The Radioprotective Effect of Chlorophyll-Based Drugs

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—This paper summarizes the relevant data on the use of chlorophyll derivatives as radioprotectors, which have been previously presented (partially and without analysis) in other works. We present and discuss findings from experiments that have shown an increase in the survival rate of chlorophyll-treated mice after γ-irradiation. Intramuscular injection of chlorophyll has been shown to lead to a pronounced decrease in leukopenia syndrome in irradiated animals. A reduction in malondialdehyde concentration in the blood and liver of irradiated animals treated with chlorophyll compared to the control group has been also found. These data suggest that suppression of the process of lipid peroxidation may be a molecular mechanism for the radioprotective effect of chlorophyll preparations. This has been confirmed by the experiments on registration of chemiluminescence accompanying lipid peroxidation in the presence of chlorophyllin (a water-soluble hydrolysis product of chlorophyll) at various concentrations. The effect of the studied drug has led to a decrease in the intensity of chemiluminescence, thus indicating a decrease in the intensity of the lipid oxidation under the action of free radicals in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. M. Ivanov, A. S. Nikiforov, M. A. Yudin, et al., Radiats. Biol. Radioekol. 60, 175 (2020). https://doi.org/10.31857/S0869803120020058

    Article  Google Scholar 

  2. S. Zimmering, O. Olvera, M. E. Hernandez, et al., Mutat. Res. 245, 47 (1990). https://doi.org/10.1016/0165-7992(90)90024-e

    Article  Google Scholar 

  3. S. K. Abraham, L. Sarma, and P. C. Kesavan, Mutat. Res. 322, 209 (1994). https://doi.org/10.1016/0165-1218(94)90008-6

    Article  Google Scholar 

  4. S. S. Kumar, B. Shankar, and K. B. Sainis, Biochim. Biophys. Acta 1672, 100 (2004). https://doi.org/10.1016/j.bbagen.2004.03.002

  5. P. Morales-Ramirez and M. C. Garcia-Rodriguez, Mutat. Res. 320, 329 (1994). https://doi.org/10.1016/0165-1218(94)90085-x

    Article  Google Scholar 

  6. P. Morales-Ramirez and M. T. Mendiola-Cruz, Mutat. Res. 344, 73 (1995). https://doi.org/10.1016/0165-1218(95)90041-1

    Article  Google Scholar 

  7. A. V. Pozdeev, V. K. Promonenkov, N. P. Lysenko, Vet. Meditsina, No. 1, 42 (2010).

    Google Scholar 

  8. A. V. Pozdeev and V. P. Gugalo, Vestn. Kursk. Gos. S-kh. Akad., No. 2, 107 (2012).

  9. A. V. Pozdeev, N. P. Lysenko, and V. N. Pozdeev, RF Patent 2508118, 2014.

  10. A. V. Pozdeev, Vestn. Kursk. Gos. S-kh. Akad., No. 7, 53 (2013).

  11. A. V. Pozdeev, Doctoral Dirrestation in Biology (Kostroma, 2015).

    Google Scholar 

  12. A. V. Pozdeev and N. P. Lysenko, Izv. Mezhd. Akad. Agrarn. Obraz. 42 (2), 60 (2018).

    Google Scholar 

  13. A. N. Grebenyuk, V. A. Basharin, R. A. Tarumov, et al., Vestn. Ross. Voen.-Med. Akad., No. 1 (41), 102 (2013).

  14. M. v. Vasin, Radiats. Biol. Radioekol. 53, 459 (2013). https://doi.org/10.7868/S0869803113050160

    Article  Google Scholar 

  15. B. N. Tarusov, in Initial Processes of Radiation Injury (Moscow, 1957), pp. 3–29.

    Google Scholar 

  16. A. M. Kuzin, Structural Metabolic Theory in Radiobiology (Nauka, Moscow, 1986) [in Russian].

  17. L. F. Panchenko, A. I. Archakov, and T. A. Aleksandrova, Vopr. Med. Khimii, No. 5, 494 (1969).

    Google Scholar 

  18. V. P. Andreichuk, E. V. Andreichuk, N. P. Lysenko, and L. V. Rogozhina, RF Patent 2323733, 2008.

  19. N. P. Lysenko, V. V. Pak, L. V. Rogozhina, and Z. G. Kusurova, Radiobiology: A Textbook, Ed. by N. P. Lysenko and V. V. Pak (Lan’, St Petersburg, 2019) [in Russian].

  20. A. I. Zhuravlev and S. M. Zubkova, Antioxidants: Free Radical Pathology and Aging (Belye Al’vy, Moscow, 2014) [in Russian].

    Google Scholar 

  21. E. G. Khachaturov and V. V. Korobko, Byull. Bot. Sada Saratov. Gos. Univ. 17, 65 (2019). https://doi.org/10.18500/1682-1637-2019-1-65-72

    Article  Google Scholar 

  22. T. M. Ong, W. Z. Whong, J. Stewart, and H. E. Brockman, Mutat. Res. 173, 111 (1986). https://doi.org/10.1016/0165-7992(86)90086-2

    Article  Google Scholar 

  23. M. Ozcan, D. Aydemir, M. Bacanli, et al., Biol. Trace Elem. Res. 199, 4475 (2021). https://doi.org/10.1007/s12011-021-02585-6

    Article  Google Scholar 

  24. L. A. Romodin, Izv. Saratov. Gos. Univ., Ser.: Khim. Biol. Ekol. 20, 427 (2020). https://doi.org/10.18500/1816-9775-2020-20-4-427-432

    Article  Google Scholar 

  25. Yu. A. Vladimirov and E. V. Proskurnina, Usp. Biol. Khim. 49, 341 (2009).

    Google Scholar 

  26. A. I. Zhuravlev, Quantum Biophysics of Animals and Humans: A Textbook (Binom, Moscow, 2015) [in Russian].

    Google Scholar 

  27. V. A. Belyakov and R. F. Vassil’ev, Photochem. Photobiol. 11, 179 (1970). https://doi.org/10.1111/j.1751-1097.1970.tb05986.x

  28. M. Pandurangan, H. Moorthy, and R. Sambandam, Cytotechnology 66, 839 (2014). https://doi.org/10.1007/s10616-013-9635-6

    Article  Google Scholar 

  29. L. I. Wang, F. Liu, Y. Luo, et al., Biomed. Rep. 3, 425 (2015). https://doi.org/10.3892/br.2015.445

    Article  Google Scholar 

  30. A. D. Belov and N. P. Lysenko, Radiats. Biol. Radioekol. 37, 772 (1997).

    Google Scholar 

  31. B. Halliwell and S. Chirico, Am. J. Clin. Nutr. 57, 715S (1993). https://doi.org/10.1093/ajcn/57.5.715S

    Article  Google Scholar 

  32. M. Ruottinen, V. Kuosmanen, I. Saimanen, et al., Anticancer Res. 40, 253 (2020). https://doi.org/10.21873/anticanres.13947

  33. E. B. Burlakova, M. V. Atkarskaya, L. D. Fatkullina, and S. G. Andreev, Radiats. Biol. Radioekol. 54, 162 (2014). https://doi.org/10.7868/S0869803114020040

    Article  Google Scholar 

  34. X. Zhang, X. Xing, H. Liu, et al., Int. J. Radiat. Biol. 96 (5), 584 (2020). https://doi.org/10.1080/09553002.2020.1708993

    Article  Google Scholar 

  35. M. Conrad and B. Proneth, Cell Res. 29, 263 (2019). https://doi.org/10.1038/s41422-019-0150-y

    Article  Google Scholar 

  36. M. Daeihamed, S. Dadashzadeh, A. Haeri, and M. F. Akhlaghi, Curr. Drug Deliv. 14, 289 (2017). https://doi.org/10.2174/1567201813666160115125756

    Article  Google Scholar 

  37. M. Arafat, C. Kirchhoefer, M. Mikov, et al., J. Pharm. Pharm. Sci. 20, 305 (2017). https://doi.org/10.18433/J3CK88

    Article  Google Scholar 

  38. H. He, Y. Lu, J. Qi, et al., Acta Pharm. Sin. B 9, 36 (2019). https://doi.org/10.1016/j.apsb.2018.06.005

    Article  Google Scholar 

  39. G. H. Naik, K. I. Priyadarsini, D. B. Naik, et al., Phytomedicine 11, 530 (2004). https://doi.org/10.1016/j.phymed.2003.08.001

    Article  Google Scholar 

  40. L. P. Pashkova, A. V. Tsyganov, and N. P. Ponomarenko, Vopr. Normativno-Pravovogo Regulirovaniya v Veterinarii, No. 4, 186 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Romodin.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies with the use of humans and animals as objects of research.

Additional information

Translated by A. Levina

Abbreviations: IL, interleukin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romodin, L.A., Lysenko, N.P. The Radioprotective Effect of Chlorophyll-Based Drugs. BIOPHYSICS 67, 78–84 (2022). https://doi.org/10.1134/S0006350922010158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922010158

Keywords:

Navigation