Skip to main content
Log in

An Analysis of the Role of Bioenergetic Processes under Radioprotective Effects Mediated by Alpha1-Adrenergic Agonists

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

An analysis of modern concepts of the mechanism of the antiradiation effect of alpha1-adrenergic agonists, which are of great interest in clinical practice of radiochemotherapy in cancer patients, has been carried out. The first explanation of their mechanism of action is based on the role of circulatory hypoxia in radiosensitive tissues due to the vasoconstrictor effect of alpha1-adrenergic agonists. During further study of the real decrease in oxygen tension in tissue under circulatory hypoxia, it was found that it is insufficient to fully provide the observed increase in the body’s radioresistance under their influence. The second important fact is that in the course of a decrease in the baseline oxygen consumption per unit of body weight when passing from small to large animals, the antiradiation effect of circulatory and hypoxic hypoxia decreases due to the great adaptive abilities in maintaining oxygen homeostasis of the cell under these conditions. This point is directly related to humans. To explain the high radiation protection in large animals under the influence of alpha1-adrenergic agonists, a hypothesis on the development of acute tissue hypoxia due to the intensification of oxygen consumption under alpha1-adrenergic receptor stimulation has been proposed. The third thesis is that alpha1-adrenergic agonists can stabilize mitochondrial homeostasis under exposure to radiation, thereby reducing the probability of radiation apoptosis of cells and maintaining optimal tissue functioning. All three noted components of the mechanism of the antiradiation effect of alpha1-adrenergic agonists can interact with each other, leading to high protection. The role of each component can change and dominate for each specific scenario of their practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. L. Gray, E. J. Moulden, J. T. Tew, and H. Jensen, Proc. Soc. Exp. Biol. Med. 79 (3), 384 (1952).

    Article  Google Scholar 

  2. Z. M. Bacq, Acta Radiol. 41 (2), 47 (1954).

    Article  Google Scholar 

  3. Z. M. Bacq, A. Herve, J. Lecomte, et al., Arch. Int. Physiol. 59 (4), 442 (1951)

    Google Scholar 

  4. H. Nakatsuka, Y. Shakudo, and M. Fujino, Nihon Igaku Hoshasen Gakkai Zasshi 26, 437 (1966).

    Google Scholar 

  5. K. N. Prasad and M. H. Van Woert, Radiat. Res. 37 (2), 305 (1969).

    Article  ADS  Google Scholar 

  6. L. F. Semenov and E. A. Prokudina, Med. Radiol. 2 (3), 35 (1957).

    Google Scholar 

  7. M. M. Konstantinova and E. Ya. Graevskii, Dokl. Akad. Nauk SSSR 133, 1427 (1960).

    Google Scholar 

  8. A. D. Smith, M. J. Ashwood-Smith, and D. Lowman, Nature 184 (22), 1729 (1959).

    Article  ADS  Google Scholar 

  9. H. Nakatsuka and H. Ochi, Nippon Igaku Hoshasen Gakkai Zasshi 26 (8), 993 (1966).

    Google Scholar 

  10. C. Prouillac, B. Celaries, P. Vicendo, et al., C. R. Biol. 329, 196 (2006).

    Article  Google Scholar 

  11. A. Mourret, C. Agnius-Delord, and R. Rinaldi, C. R. Acad. Sci. Hebd. Seances Acad. Sci. D 275, 1575 (1972).

    Google Scholar 

  12. A. Mourret, C. Agnius-Delord, C. Martinet, et al., C. R. Acad. Sci. Hebd, Seances Acad. Sci. D 279, 1963 (1974).

    Google Scholar 

  13. J. P. Caravel and C. Luu Duc, Farmacol. Prat. 36, 49 (1981).

    Google Scholar 

  14. V. I. Kulinskii and A. D. Klimova, Radiats. Biol. Radioekol. 33 (5), 681 (1993)

    Google Scholar 

  15. L. A. Il’in, N. M. Rudnyi, N. N. Suvorov, et al., Indralin, an Urgent Radioprotector: Antiradiation Effects, Pharmacology, Mechanism of Action, Clinical Practice (RF Ministry of Health, Moscow, 1994) [in Russian].

    Google Scholar 

  16. M. V. Vasin, G. A. Chernov, L. V. Koroleva, et al., Radiats. Biol. Radioekol. 36 (1), 36 (1996).

    Google Scholar 

  17. M. V. Vasin, V. V. Antipov, G. A. Chernov, et al., Radiats. Biol. Radioekol. 37 (1), 46 (1997).

    Google Scholar 

  18. M. V. Vasin, G. A. Chernov, and V. V. Antipov, Radiats. Biol. Radioekol. 37 (6), 896 (1997).

    Google Scholar 

  19. I. S. Kolesnichenko, L. S. Mikhailov, A. S. Boyarinov, and A. V. Grishin, Veterinariya, No. 12, 52 (2005).

  20. V. S. Shashkov, V. I. Efimov, M. V. Vasin, et al., Aviakosm. Ekol. Med. 44 (1), 15 (2010).

  21. M. V. Vasin, L. F. Semenov, N. N. Suvorov, et al., J. Radiat. Res. 55 (6), 51049 (2014). https://doi.org/10.1093/jrr/rru046

    Article  Google Scholar 

  22. M. V. Vasin, G. A. Chernov, L. V. Koroleva, et al., Radiats. Biol. Radioekol. 36 (2), 168 (1996).

    Google Scholar 

  23. M. V. Vasin, I. B. Ushakov, and N. N. Suvorov, Radiats. Biol. Radioekol. 38 (1), 42 (1998).

    Google Scholar 

  24. M. V. Vasin, I. B. Ushakov, L. A. Semenova, et al., Radiats. Biol. Radioekol. 39 (2–3), 249 (1999).

  25. M. D. Pomerantseva, L. K. Ramaiya, M. V. Vasin, and V. V. Antipov, Russ. J. Genet. 39 (9), 1092 (2003).

    Article  Google Scholar 

  26. M. V. Vasin, I. B. Ushakov, V. Yu. Kovtun, et al., Radiats. Biol. Radioekol. 44 (1), 68 (2004).

    Google Scholar 

  27. M. V. Vasin, I. B. Ushakov, E. P. Korovkina, and V. Yu. Kovtun, Radiats. Biol. Radioekol. 44 (3), 333 (2004).

    Google Scholar 

  28. M. V. Vasin, I. B. Ushakov, and V. Yu. Kovtun, Vopr. Onkol. 62 (3), 406 (2016).

    Google Scholar 

  29. I. Aoki, N. Abe, and K. Toyama, Nihon Ketsueki Gakkai Zasshi 48 (5), 1154 (1985).

    Google Scholar 

  30. A. Graul-Conroy, E. J. Hicks, and W. E. Fahl, Int. J. Cancer 138 (12), 3011 (2016).https://doi.org/10.1002/ijc.30037

    Article  Google Scholar 

  31. W. E. Fahl, Arch. Dermatol. Res. 308 (10), 751 (2016). https://doi.org/10.1007/s00403-016-1691-2

    Article  Google Scholar 

  32. A. Graul-Conroy, M. Hoover-Regan, K. B. DeSantes, et al., Integr. Cancer Sci. Ther. 5 (6), 10 (2018). https://doi.org/10.15761/ICST.1000293

    Article  Google Scholar 

  33. J. F. Cleary, A. M. Anderson, J. C. Eickhoff, et al., Radiat. Oncol. 12 (1), 201 (2017). https://doi.org/10.1186/s13014-017-0940-7

    Article  Google Scholar 

  34. M. V. Vasin, I. B. Ushakov, L. V. Koroleva, and V. V. Antipov, Radiats. Biol. Radioekol. 39 (2–3), 238 (1999).

  35. M. V. Vasin, V. Yu. Solov’ev, V. N. Mal’tsev, et al., Med. Radiol. Radiats. Bezop. 63 (6), 71 (2018).

    Article  Google Scholar 

  36. C. van der Meer and D. W. van Bekkum, Int. J. Radiat. Biol. 1 (1), 5 (1959).

    Google Scholar 

  37. P. G. Zherebchenko and N. N. Suvorov, Radiobiolo-giya 3 (4), 595 (1963).

    Google Scholar 

  38. S. P. Yarmonenko, Yu. I. Rampan, B. B. Karochkin, et al., Radiobiologiya 10 (5), 700 (1970).

    Google Scholar 

  39. R. L. Prewitt and X. J. Musacchia, Int. J. Radiat. Biol. 27, 181 (1975). https://doi.org/10.1080/09553007514550181

    Article  Google Scholar 

  40. H. van den Brenk and D. Jamieson, Int. J. Radiat. Biol. 4 (4), 379 (1962).

    Google Scholar 

  41. H. van den Brenk and R. Moore, Nature 183 (4674), 1530 (1959).

    Article  ADS  Google Scholar 

  42. M. V. Vasin, Radiobiologiya 26 (4), 563 (1986).

    Google Scholar 

  43. G. J. Maestroni, and A. Conti, Exp. Hematol. 22 (3), 313 (1994).

    Google Scholar 

  44. G. J. M. Maestroni, Neuroimmune Pharmacol. 15 (1), 82 (2020). https://doi.org/10.1007/s11481-019-09840-7

    Article  Google Scholar 

  45. J. Han, Z. Zou, C. Zhu, et al., Arch. Biochem. Biophys. 490 (2), 96 (2009). https://doi.org/10.1016/j.abb.2009.08.009

    Article  Google Scholar 

  46. L. Sterin-Borda, C. Furlan, B. Orman, and E. Borda, Biochem. Pharmacol. 74 (9), 1401 (2007).

    Article  Google Scholar 

  47. I. B. Smirnova, G. V. Dontsova, M. I. Yanushevskaya, and E. Ya. Graevskiii, Radiobiologiya 15 (5), 680 (1975).

    Google Scholar 

  48. E. I. Yartsev, V. I. Kulinskii, S. D. Novosel’tseva, and V. G. Yashunskii, Radiobiologiya 19 (2), 229 (1979).

    Google Scholar 

  49. E. G. Skurikhin, E. S. Khmelevskaya, O. V. Pershina, et al., Byull. Eksp. Biol. Med. 10 (3), 128 (2010).

    Google Scholar 

  50. A. Spiegel, S. Shivtiel, A. Kalinkovich, et al., Nat. Immunol. 8 (10), 1123 (2007).

    Article  Google Scholar 

  51. Y. Katayama, M. Battista, W. M. Kao, et al., Cell. 124 (2), 407 (2006). https://doi.org/10.1016/j.cell.2005.10.041

    Article  Google Scholar 

  52. A. Recalde, A. Richart, C. Guerin, et al., Arterioscler. Thromb. Vasc. Biol. 32 (3), 643 (2012). https://doi.org/10.1161/ATVBAHA.111.244392

    Article  Google Scholar 

  53. K. Lapid, T. Itkin, G. D’Uva, et al., J. Clin. Invest. 123 (4), 1705 (2013). https://doi.org/10.1172/JCI64149

    Article  Google Scholar 

  54. Y.-J. Lee, H. S. Kim, H. S. Seo, et al., PPAR Res. 2020, 3785137 (2020). https://doi.org/10.1155/2020/3785137

  55. V. I. Kulinskii and V. G. Yashunskii, Radiobiologiya 18 (5), 667 (1978).

    Google Scholar 

  56. M. Nakaoka, E. Iwai-Kanai, and M. Katamura, Biochem. Biophys. Res. Commun. 456 (1), 250 (2015). https://doi.org/10.1016/j.bbrc.2014.11.067

    Article  Google Scholar 

  57. V. I. Kulinskii and L. I. Zolochevskaya, Radiobiologiya 13 (3) 373 (1973).

    Google Scholar 

  58. A. A. Orlovskii and L. M. Rozhdestvenskii, Radiobiologiya 25 (2) 230 (1985).

    Google Scholar 

  59. M. V. Vasin, I. B. Ushakov, V. Yu. Kovtun, et al., J. Radioprot. Res. 2 (2), 3 (2014).

    Google Scholar 

  60. K. A. Dora, S. M. Richards, S. Rattigan, et al., Am. J. Physiol. 262 (3), H698 (1992). https://doi.org/10.1152/ajpheart.1992.262.3.H698

    Article  Google Scholar 

  61. L. I. Zolochevskaya, Radiobiologiya 13 (6), 926 (1973).

  62. M. Praslicka, M. Hill, and L. Novak, Int. J. Radiat. B-iol. Relat. Stud. Phys. Chem. Med. 4, 567 (1962). https://doi.org/10.1080/09553006214550381

    Article  Google Scholar 

  63. A. Vacek and D. Rotkovska, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 8, 285 (1964). https://doi.org/10.1080/09553006414550301

    Article  Google Scholar 

  64. M. Okuda, H. C. Lee., C. Kumar, and B. Chance, Acta Physiol. Scand. 145 (2), 159 (1992).

    Article  Google Scholar 

  65. L. A. Orbeli, Fiziol. Zh. SSSR 35 (5), 594 (1949).

    Google Scholar 

  66. V. I. Kulinskii, A. D. Klimova, V. G. Yashunskii, et al., Radiobiologiya 26 (1), 11 (1986).

    Google Scholar 

  67. V. I. Kulinskii, A. K. Kuntsevich, and L. V. Trufanova, Bull. Exp. Biol. Med. 92 (8), 1042 (1981).

  68. V. I., Kulinskii and L. V. Trufanova, Dokl. Akad. Nauk SSSR 224 (6), 1439 (1975).

    Google Scholar 

  69. M. V. Vasin, I. B. Ushakov, E. P. Korovkina, and V. Yu. Kovtun, Bull. Exp. Biol. Med. 155 (3), 360 (2013).

  70. E. Nisoli and M. O. Carruba, J. Cell Sci. 119, 2855 (2006). https://doi.org/10.1242/jcs.03062

    Article  Google Scholar 

  71. C. Sarbu, and D. Casoni, Cent. Eur. J. Chem. 11 (5) 679 (2013). https://doi.org/10.2478/s11532-013-0210-y

    Article  Google Scholar 

  72. H. Zhu, S. McElwee-Witme, and M. Perrone, Cell Death Differ. 7, 773 (2000).

    Article  Google Scholar 

  73. H. Gao, L. Chen, and H. T. Yang, Cardiovasc. Res. 75, 584 (2007).

    Article  Google Scholar 

  74. R. Naderi, A. Imani, M. Faghihi, and M. Moghimian, J. Surg. Res. 164 (1), e37 (2010). https://doi.org/10.1016/j.jss.2010.04.060

    Article  Google Scholar 

  75. X. Y. Wang, J. Yu, F. Y. Zhang, et al., Int. J. Radiat. Oncol. Biol. Phys. 104 (3) 644 (2019). https://doi.org/10.1016/j.ijrobp.2019.02.048

    Article  Google Scholar 

  76. Z. Ju, H. Li-chi, W. Yi-fei, and Y. Xiao-xu, Chinese J. Tissue Eng. Res. 22 (8), 1161 (2018). https://doi.org/10.3969/j.issn.2095-4344.0814

    Article  Google Scholar 

  77. A. Garten, S. Schuster, M. Penke, et al., Nat. Rev. Endocrinol. 11 (9), 535 (2015). https://doi.org/10.1038/nrendo.2015.117

    Article  Google Scholar 

  78. B. Xiang, L. Han, X. Wang, et al., Int. J. Radiat. Oncol. Biol. Phys. 96 (3), 538 (2016). https://doi.org/10.1016/j.ijrobp.2016.06.2442

    Article  Google Scholar 

  79. N. B. Ruderman, X. J. Xu, L. Nelson, et al., Am. J. Physiol. Endocrinol. Metab. 298 (4), E751 (2010) https://doi.org/10.1152/ajpendo.00745.2009

    Article  Google Scholar 

  80. A. Kauppinen, T. Suuronen, and J. Ojala, Cell Signaling 25 (10), 1939 (2013). https://doi.org/10.1016/j.cellsig.2013.06.007

    Article  Google Scholar 

  81. C. K. Singh, G. Chhabra, and A. Ndiaye, Antioxid. Redox Signaling 28 (8), 643 (2018). https://doi.org/10.1089/ars.2017.7290

    Article  Google Scholar 

  82. R. M. Nagler and D. Laufer, Int. J. Radiat. Oncol. Biol. Phys. 40, 477 (1998).

    Article  Google Scholar 

  83. B. Xiang, Y.-J. LIm., and X.-B. Zhao, Exp. Ther. Med. 5 (3), 875 (2013).

    Article  Google Scholar 

  84. B. Xiang, Y.-J. LIm., and X.-B. Zhao, Radiat. Res. 183 (6), 693 (2015). https://doi.org/10.1667/RR13890.1

    Article  ADS  Google Scholar 

  85. J. C. Elverdin, M. O. Kaniucki, F. J. Stefano, and V. J. Perec, Acta Odontol. Latinoam. 5 (1), 31 (1990).

    Google Scholar 

  86. N. R. Bruchas, N. L. Toews, C. S. Bockman, and P. W. Abel, Eur. J. Pharmacol. 578 (2–3), 349 (2008). https://doi.org/10.1016/j.ejphar.2007.09.029

  87. M. V. Vasin, T. S. Gan’shina, R. S. Mirzoyan, et al., Bull. Exp. Biol. Med. 165 (3), 364 (2018).

    Article  Google Scholar 

  88. R. Nagler, Y. Marmary, P. C. Fox, et al., Radiat. Res. 147, 468 (1997).

    Article  ADS  Google Scholar 

  89. J.-S. Wu, T.-N. Lin, and K. K. J. Wu, Cell Physiol. 220 (1), 58 (2009). https://doi.org/10.1002/jcp.21730

    Article  Google Scholar 

  90. D. M. Valks, S. A. Cook, F. H. Pham, et al., Mol. Cell Cardiol. 34 (7), 749 (2002). https://doi.org/10.1006/jmcc.2002.2014\

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Vasin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by D. Novikova

Abbreviations: PPAR—peroxisome proliferator-activated receptors; AMPK, AMP-activated protein kinase; PGC-1α—peroxisome proliferator-activated receptor gamma coactivator 1‑alpha; PI3K—phosphoinositide 3-kinases; NAMPT—nicotinamide phosphoribosyltransferase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasin, M.V., Ushakov, I.B. An Analysis of the Role of Bioenergetic Processes under Radioprotective Effects Mediated by Alpha1-Adrenergic Agonists. BIOPHYSICS 66, 502–507 (2021). https://doi.org/10.1134/S0006350921030210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921030210

Navigation