Skip to main content
Log in

Levels of Circulating DNA in Blood Serum and DNA Damage in Leukocytes of Healthy Donors of Different Genders and Ages

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We studied the levels of extracellular nuclear and mitochondrial DNA of blood serum and DNA damage in leukocytes of healthy donors of different sex and age groups. The baseline levels of DNA damage in leukocytes and serum DNA levels were shown to vary greatly among different donors. The baseline level of DNA damage in leukocytes was not associated with the presence of chronic deceases or an occupational health risk for elderly donors. It was found that extracellular DNA concentrations were generally higher in men than in women. There is a tendency towards an increase in the relative mitochondrial DNA copy number determined by ΔCt in women but not in men: the relative mtDNA copy number in elderly individuals varies significantly in both sexes, possibly due to age-related physiological changes. It is necessary to consider the gender and age of patients when using an indicator such as the level of extracellular DNA of blood serum for diagnosis and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. C. Kohler, Z. Barekati, R. Radpour, and X. Y. Zhong, Anticancer Res. 31, 2623 (2011)

    Google Scholar 

  2. Y. I. Elshimali, H. Khaddour, M. Sarkissyan, et al., Int. J. Mol. Sci. 14 (9), 18925 (2013). https://doi.org/10.3390/ijms140918925

    Article  Google Scholar 

  3. D. Chandrananda, N. P. Thorne, M. Bahlo, BMC Med. Genomics. 8, 29 (2015). https://doi.org/10.1186/s12920-015-0107-z

    Article  Google Scholar 

  4. R. R. Zachariah, S. Schmid, N. Buerki, et al., Obstet. Gynecol. 112 (4), 843 (2008). https://doi.org/10.1097/AOG.0b013e3181867bc0

    Article  Google Scholar 

  5. S. N. Tamkovich, V. V. Vlassov, and P. P. Laktionov, Mo. Biol. (Moscow) 42 (1), 9 (2008). https://doi.org/10.1134/S0026893308010020

  6. M. Yu, Mitochondrial DNA 23 (5), 329 (2012). https://doi.org/10.3109/19401736.2012.696625

    Article  Google Scholar 

  7. S. Rapisuwon, E. E. Vietsch, and A. Wellstein, Comput. Struct. Biotechnol. J. 14, 211 (2016). https://doi.org/10.1016/j.csbj.2016.05.004

    Article  Google Scholar 

  8. K.-A. Yoon, S. Park, S. H. Lee, et al., J. Mol. Diagn. 11 (3), 182 (2009). https://doi.org/10.2353/jmoldx.2009.080098

    Article  Google Scholar 

  9. W. Chen, F. Cai, B. Zhang, and X. Y. Zhong, Clin. Chem. Lab. Med. 50 (2), 261 (2011). https://doi.org/10.1515/cclm.2011.773

    Article  Google Scholar 

  10. A. Szpechcinski, J. Chorostowska-Wynimko, and R. Struniawski, et al., Br. J. Cancer 113 (3), 476 (2015). https://doi.org/10.1038/bjc.2015.225

    Article  Google Scholar 

  11. G. Sozzi, D. Conte, L. Mariani, et al., Cancer Res. 61 (12), 4675 (2001).

    Google Scholar 

  12. S. N. Tamkovich, O. E. Bryzgunova, E. Yu. Rykova, et al., Clin. Chem. 51 (7), 1317 (2005). https://doi.org/10.1373/clinchem.2004.045062

    Article  Google Scholar 

  13. X. Y. Zhong, S. Hahn, V. Kiefer, and W. Holzgreve, Ann. Hematol. 86 (2), 139 (2007). https://doi.org/10.1007/s00277-006-0182-5

    Article  Google Scholar 

  14. D. Czeiger, G. Shaked, H. Eini, et al., Amer. Soc Clin. Pathol. 135 (2), 264 (2011). https://doi.org/10.1309/AJCP4RK2IHVKTTZV

    Article  Google Scholar 

  15. J. Jylhava, T. Kotipelto, A. Raitala, et al., Mech Ageing Dev. 132 (1–2), 20 (2011). https://doi.org/10.1016/j.mad.2010.11.001

  16. N. P. Sirota and E. A. Kuznetsova, Bull. Exp. Biol. Med. 145 (2), 194 (2008).

    Article  Google Scholar 

  17. E. I. Azzam, J. P. Jay-Gerin, and D. Pain, Cancer Lett. 327, 48 (2012) https://doi.org/10.1016/j.canlet.2011.12.012

    Article  Google Scholar 

  18. M. P. A. Hannon-Fletcher, M. J. O’Kane, K. W. Mo-les, et al., Mutat. Res. 460 (1), 53 (2000). https://doi.org/10.1016/s0921-8777(00)00013-6

    Article  Google Scholar 

  19. M. Harangi, E. Remenyik, I. Seres, et al., Mutat. Res. 513 (1–2), 17 (2002). https://doi.org/10.1016/s1383-5718(01)00285-6

  20. P. Sanchez, R. Penarroja, F. Gallegos, et al., Arch. Med. Res. 35 (6), 480 (2004). https://doi.org/10.1016/j.arcmed. 2004.11.008

  21. J. Blasiak, M. Arabski, and R. Krupa, Mutat. Res. 554 (1–2), 297 (2004). https://doi.org/10.1016/j.mrfmmm. 2004.05.011

  22. R. Demirbag, R. Yilmaz, A. Kocyigit, Mutat. Res. 570 (2), 197 (2005). https://doi.org/10.1016/j.mrfmmm.2004.11.003

    Article  Google Scholar 

  23. A. J. Sigurdson, M. Hauptmann, B. H. Alexander, et al., Mutat. Res. 586 (2), 173 (2005). https://doi.org/10.1016/j.mrgentox.2005.07.001

    Article  Google Scholar 

  24. A. Collins, M. Milic, S. Bonassi, and M. Dusinska, Mutat. Res. 843, 1 (2019). https://doi.org/10.1016/j.mrgentox. 2019.06.002

  25. W. Copeland and M. J. Longley, DNA Repair (Amst.) 19, 190 (2014). https://doi.org/10.1016/j.dnarep.2014.03.010

    Article  Google Scholar 

  26. P. Moller, L. Knudsen, S. Loft, and H. Wallin, Cancer Epidemiol. Biomarkers Prev. 9 (10), 1005 (2000).

    Google Scholar 

  27. N. K. Chemeris, A. B. Gapeyev, N. P. Sirota, et al., Mutat. Res. 558, 27 (2004). https://doi.org/10.1007/1-4020-4278-7_7

    Article  Google Scholar 

  28. D. P. Lovell and T. Omori, Mutagenesis 23 (3), 171 (2008). https://doi.org/10.1093/mutage/gen015

    Article  Google Scholar 

  29. J. Knez, E. Winckelmans, and M. Plusquin, Am. J. Epidemiol. 183 (2), 138 (2016). https://doi.org/10.1093/aje/kwv175

    Article  Google Scholar 

  30. C.-Y. Xia, Y. Liu, H.-R. Yang, et al., Chin. Med. J. 130 (20), 2435 (2017). https://doi.org/10.4103/0366-6999.216395

    Article  Google Scholar 

Download references

Funding

The studies were carried out within the framework of the basic part of state assignment of the Ministry of Education and Science of the Russian Federation, R&D no. 1878 “The Development of Fundamental Aspects of Molecular Diagnostics and Mitochondrial Pharmacology.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kuznetsova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by E. Makeeva

Abbreviations: %TDNA, DNA percentage in a comet tail; cfDNA, cell-free DNA; nDNA, nuclear DNA; mtDNA, mitochondrial DNA; qPCR, real-time (quantitative) polymerase chain reaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitroshina, I.Y., Sirota, N.P., Prokofiev, V.N. et al. Levels of Circulating DNA in Blood Serum and DNA Damage in Leukocytes of Healthy Donors of Different Genders and Ages. BIOPHYSICS 66, 310–315 (2021). https://doi.org/10.1134/S0006350921020147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921020147

Navigation