Skip to main content
Log in

The Pros and Cons of Circular RNAs as miRNA Sponges

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The roles that noncoding RNAs play in various cells have been a focus of intense research in recent years. Circular RNAs (circRNAs) are noncoding RNAs that were initially thought to be junk by-products of splicing. Many circRNAs have been found to demonstrate important regulatory functions and, in particular, to act as miRNA sponges. The function of an miRNA sponge was compared with the function of a classic transcription factor (TF)-dependent regulatory loop in terms of efficiency, working rate, and noise characteristics. A circRNA with multiple binding sites for miRNA was found to act more efficiently than a TF and the respective loop worked faster, but only when the binding sites were not fully saturated with miRNA molecules. The noise characteristics of the circRNA loop were significantly worse with an increasing number of binding sites. A circRNA with one binding site was shown to be inefficient as an miRNA sponge. The circRNA-mediated regulation was assumed to provide a specific tool to the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Greene, A. M. Baird, L. Brady, et al., Front. Mol. Biosci. 4, 38 (2017).

    Article  Google Scholar 

  2. S. Guil and M. Esteller, Trends Biochem. Sci. 40 (5), 248 (2015).

    Article  Google Scholar 

  3. L. M. Holdt, A. Kohlmaier, and D. Teupser, Cell. Mol. Life Sci. 75, 1071 (2018).

    Article  Google Scholar 

  4. J. Salzman, C. Gawad, P. L. Wang, et al., PLoS One 7 (2), e30733 (2012).

    Article  ADS  Google Scholar 

  5. T. B. Hansen, J. Kjems, and C. K. Damgaard, Cancer Res. 73, 5609 (2013).

    Article  Google Scholar 

  6. I. Jost, L. A. Shalamova, G. K. Gerresheim, et al., RNA Biol. 15 (8), 1032 (2018). https://doi.org/10.1080/15476286.2018.1435248

    Article  Google Scholar 

  7. S. Memczak, M. Jens, A. Elefsinioti, et al., Nature 495, 333, (2013). https://doi.org/10.1038/nature11928

    Article  ADS  Google Scholar 

  8. M. Wang, F. Yu, W. Wu, et al., Int. J. Biol. Sci. 13, 1497 (2017). https://doi.org/10.7150/ijbs.22531

    Article  Google Scholar 

  9. R. Ashwal-Fluss, M. Meyer, N. R. Pamudurti, et al., Mol. Cell 56 (1), 55 (2014).

    Article  Google Scholar 

  10. L. L. Chen and L. Yang, RNA Biol. 12 (4), 381 (2015).

    Article  Google Scholar 

  11. Y. Dong, D. He, Z. Peng, et al., J. Hematol. Oncol. 10, Art. 2 (2017). https://doi.org/10.1186/s13045-016-0370-2

    Article  Google Scholar 

  12. J. Singh and R. A. Padgett, Nat. Struct. Mol. Biol. 16 (11), 1128 (2009).

    Article  Google Scholar 

  13. J. Hnilicova and D. Stanek, Nucleus 2 (3), 182 (2011).

    Article  Google Scholar 

  14. L. Xu, H. Chen, X. Hu, et al., Mol. Biol. Evol. 23 (6), 1107 (2006).

    Article  Google Scholar 

  15. Y. Taniguchi, P. J. Choi, G. W. Li, et al., Science 329 (5991), 533 (2010).

    Article  ADS  Google Scholar 

  16. S. O. Olofsson, K. Bostrom, P. Carlsson, et al., Am. Heart J. 113 (2, Pt. 2), 446 (1987).

    Article  Google Scholar 

  17. M. K. Doherty, D. E. Hammond, M. J. Clague, et al., J. Proteome Res. 8 (1), 104 (2009).

    Article  Google Scholar 

  18. T. C. Chang and J. T. Mendell, Annu. Rev. Genomics Hum. Genet. 8, 215 (2007).

    Article  Google Scholar 

  19. D. T. Gillespie, Phys. Rev. E 54 (2), 2084 (1996).

    Article  ADS  Google Scholar 

  20. M. Osella, C. Bosia, D. Cora, and M. Caselle, PLoS Comput. Biol. 7 (3), e1001101 (2010).

    Article  Google Scholar 

  21. S. Tej, K. Gaurav, and S. Mukherji, Phys. Biol. 16 (4), 046008 (2019). https://doi.org/10.1088/1478-3975/ab1563

    Article  ADS  Google Scholar 

  22. M. A. Duk, M. G. Samsonova, and A. M. Samsonov, BMC Genomics 15 (Suppl. 12), S9 (2014). https://doi.org/10.1186/1471-2164-15-S12-S9

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.A. Rukolaine for advice.

Funding

M.A. Duk acknowledges the support from research program no. 0040-2019-0003 Nonlinear Processes and Mechanisms of Mass Transfer in Condensed Media and Biostructures of the Ioffe Physical Technical Institute (study of the circRNA role). M.G. Samsonova acknowledges support from the Ministry of Education and Science of the Russian Federation (contract no. 075-15-2020-934 Advanced Digital Technologies with the St. Petersburg Polytechnic University) (verification of the biological significance of the study).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Duk.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: TF, transcription factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duk, M.A., Samsonova, M.G. The Pros and Cons of Circular RNAs as miRNA Sponges. BIOPHYSICS 66, 8–16 (2021). https://doi.org/10.1134/S0006350921010036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921010036

Navigation