Fluorimetric Analysis of the Impact of Coal Sludge Pollution on Phytoplankton

Abstract

The results of biomonitoring of the Olkhovaya River (Donetsk oblast) are presented. The impact of mine sludge waste on the state of surface water was shown. The assessment of physical and chemical parameters made it possible to characterize the water in the Olkhovaya River as dirty and polluted with a large number of suspended coal particles, whose content significantly exceeded the maximum permissible standards. The decrease in the content of chlorophyll in water samples taken below the sludge drains into the riverbed was determined by the fluorimetric method. The results of analysis of chlorophyll fluorescence induction curves are presented. It was found that contamination by sludge drains leads to disruption of primary photosynthetic reactions in phytoplankton cells.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    A. I. Gavrishin, Usp. Sovrem. Estestvozn. 10, 102 (2016).

    Google Scholar 

  2. 2

    A. I. Gavrishin, Fundament. Issled. 11, 2465 (2014)

    Google Scholar 

  3. 3

    E. G. Gorlov, O. G. Safiev, and A. I. Seregin, Solid Fuel Chem. 42 (1), 46 (2008).

    Google Scholar 

  4. 4

    E. I. Zakharov, N. M. Kachurin, and I. I. Mokhnachuk, Izv. Tul’sk. Gos. Univ., Ser. Nauki Zemle 2, 58 (2012).

  5. 5

    A. P. Krasavin, Environmental Protection in the Coal Mining Industry (Nedra, Moscow, 1991) [in Russian].

    Google Scholar 

  6. 6

    G. A. Solodov, E. V. Zhbyr’, A. V. Papin, et al., Izv. Tomsk. Politekh. Univ. 310 (1), 139 (2007).

    Google Scholar 

  7. 7

    A. V. Papin, G. A. Solodov, A. N. Zaostrovskii, et al., Vestn. Kuzbass. Gos. Tekh. Univ. 2 (39), 86 (2004)

    Google Scholar 

  8. 8

    K. Trishala Parmar, D. Rawtani, and Y. K. Agrawal, Front. Life Sci. 9, 110 (2016).

    Article  Google Scholar 

  9. 9

    D. N. Matorin and A. B. Rubin, Chlorophyll Fluorescence in Higher Plants and Algae (IKI-RKhD, Izhevsk, 2012) [in Russian].

  10. 10

    G. C. Papageorgiou and Govindjee, Chlorophyll Fluorescence:A Signature of Photosynthesis (Springer, Dordrecht, 2004).

  11. 11

    U. Schreiber, W. Bilger, and C. Neubauer, Ecophysiol. Photosynthesis 100, 49 (1994).

    Google Scholar 

  12. 12

    D. Yu. Korneev, Information Capacity of the Method of Chlorophyll Fluorescence Induction (Alterpress, Kiev, 2002) [in Russian].

    Google Scholar 

  13. 13

    V. A. Osipov, G. M. Abdurakhmanov, A. A. Gadzhiev, et al., Yug Rossii: Ekologiya, Razvitie 7 (2), 93 (2012)

    Google Scholar 

  14. 14

    S. V. Bespalova, S. V. Chufitskii, S. M. Romanchuk, et al., Probl Ekol. Okhrany Prirody Tekhnogennogo Reg. 3–4, 152 (2018).

    Google Scholar 

  15. 15

    C. Jaffrennou, L. Stephan, P. Giamarchi, et al., J. Fluorescence 17, 564 (2007).

    Article  Google Scholar 

  16. 16

    T. E. Weaks, Hydrobiologia 97, 97 (1982).

    Article  Google Scholar 

  17. 17

    S. L. Hoeffner and S. E. Manahan, J. Environ. Sci. Health. A: Environ. Sci. Eng. 15 (2), 149 (1980).

    Google Scholar 

  18. 18

    RD 52.24.643-2002: A Method for Integrated Assessment of the Level of Surface Water Pollution Based on Hydrochemical Parameters (Rosgidromet, Moscow, 2013) [in Russian].

  19. 19

    GN 2.1.5.1315-03: Maximum Allowable Concentrations of Chemical Substances in Waters Used for Household Purposes, Drinking, and Public Amenities (Moscow, 2003) [in Russian].

  20. 20

    I. G. Radchenko, V. I. Kapkov, and V. D. Fedorov, Guidelines for Collecting and Analyzing Samples of Marine Phytoplankton (Mordvintsev, Moscow, 2010) [in Russian].

    Google Scholar 

  21. 21

    A. V. Topachevskii and N. P. Masyuk, Freshwater Algae of Ukraine (Naukova Dumka, Kiev, 1984) [ in Russian].

    Google Scholar 

  22. 22

    V. N. Gol’tsev, M. Kh. Kaladzhi, M. A. Kuzmanova, et al., Variable and Delayed Chlorophyll a Fluorescence: Theoretical Basis and Applications in Plant Research (Space Research Inst., Moscow, 2014) [in Russian].

  23. 23

    K. Maxwell and G. N. Johnson, J. Exp. Bot. 51 (345), 659 (2000).

    Article  Google Scholar 

  24. 24

    R. J. Strasser, A. Srivastava, and M. Tsimilli-Michael, Probing Photosynthesis: Mechanism, Regulation, and Adaptation (CRC Press, London, 2000).

    Google Scholar 

  25. 25

    D. A. Novikov and V. V. Novochadov, Statistical Methods in Medicobiological Experiments (Volgograd State Medical Univ., Volgograd, 2005) [in Russian].

Download references

ACKNOWLEDGMENTS

The authors are grateful to E. I. Mironenko, senior teacher of the Department of Botany and Ecology of the Faculty of Biology of Donetsk National University, for assistance in determining the species composition of phytoplankton in the studied water samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. V. Chufitskiy.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: SCIWP—specific combinatorial index of water pollution; MPC—maximum permissible concentration; PS— photosystem.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bespalova, S.V., Romanchuk, S.M., Chufitskiy, S.V. et al. Fluorimetric Analysis of the Impact of Coal Sludge Pollution on Phytoplankton. BIOPHYSICS 65, 850–857 (2020). https://doi.org/10.1134/S0006350920050024

Download citation

  • Keywords: fluorimetry
  • phytoplankton
  • sludge accumulators
  • bioindication