Skip to main content
Log in

Galactic Factors, the Young Sun, the Earth, and the Biophysics of Living Systems

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effects of radiation from the young Sun and galactic cosmic rays on the physical conditions on the early Earth are significantly underestimated in studies of the problems related to the origin and evolution of the biosphere. This review considers the dynamics of solar and galactic processes over the 4.56 billion years of the existence of the Solar System. These factors substantially affected the development of adaptive technologies in ancient and modern living systems. The features of biosphere development are considered for the early Earth under the young Sun, which was fainter, but more flare active. The radiation spectrum of the young Sun is discussed together with the paradoxical mismatch between the solar radiation spectrum and the chlorophyll adsorption spectrum. Ways of solving the paradox are proposed. The role of solar radiation is important when studying models of the early biosphere of the Earth and hypothetical biospheres of giant planet satellites and exoplanets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. V. Ragulskaya, The Sun and the Biosphere: Billions of Years of Coexistence (Radiotekhnika, Moscow, 2019) [in Russian]. http://www.izmiran.ru/pub/izmiran/Ragulskaya-Sun-2019.pdf

  2. E. G. Khramova, in Life and the Universe, Ed. by V. N. Obridko and M. V. Ragulskaya (VVM, St. Petersburg, 2017) [in Russian]. http://www.izmiran. ru/pub/izmiran/Life-n-Universe.pdf.

    Google Scholar 

  3. M. A. Nikitin, The Origin of Life: From Nebula to Cell (ANF, Moscow, 2016) [in Russian].

    Google Scholar 

  4. M. V. Ragulskaya, Tekhnol. Zhivykh Sistem 16 (5), 60 (2019).

    Google Scholar 

  5. V. A. Tverdislov and E. V. Malyshko, Usp. Fiz. Nauk 189 (4), 375 (2019).

    Article  Google Scholar 

  6. A. Y. Mulkidjan and M. Y. Galperin, Biol. Direct 4, 27 (2009).

    Article  Google Scholar 

  7. A. B. Struminsky, Doctoral Dissertation in Physics and Mathematocs (Moscow, 2011).

  8. E. Rozanov, K. Georgieva, I. Mironova, et al., J. A-tmos. Solar-Terr. Phys. 149, 146 (2016).

    Article  ADS  Google Scholar 

  9. O. V. Kochina, D. Z. Vibe, S. V. Kalensky, and A. I. Vasyunin, Astron. Zh. 90, 892 (2013).

    Google Scholar 

  10. Th. Henning and D. Semenov, Chem. Rev. 113, 9016 (2013).

    Article  Google Scholar 

  11. K. I. Oberg, V. V. Guzman, K. Furuya, et al., Nature 520, 198 (2015).

    Article  ADS  Google Scholar 

  12. D. Atri and A. Melot, Astroparticle Phys. 53, 186 (2014).

    Article  ADS  Google Scholar 

  13. K. Wyman and S. Redfield, Astrophys. J. 773, A96 (2013).

    Article  ADS  Google Scholar 

  14. Q. Pognan, C. Garraffo, O. Cohen, et al., Astrophys. J. 856, 1 (2018).

    Article  ADS  Google Scholar 

  15. N. J. Shaviv, New Astronomy 8, 39 (2003).

    Article  ADS  Google Scholar 

  16. H. Svensmark, Monthly Not. Roy. Astron. Soc. 423 (2), 1234 (2012).

    Article  ADS  Google Scholar 

  17. V. S. Murzin, Introduction to the Physics of Cosmic Rays (Moscow State Univ., Moscow, 1988) [in Russian].

    Google Scholar 

  18. N. K. Belisheva, H. Lammer, at al., Astrophys. Space Sci. Trans. 8, 7 (2012). https://doi.org/10.5194/astra-8-7-2012

    Article  ADS  Google Scholar 

  19. E. Gromozova, S. Voychuk, P. Grigoriev, et al., Sun Geosph. 7 (2), 117 (2012).

    ADS  Google Scholar 

  20. M. V. Ragulskaya, E. A. Rudenchik, S. M. Chibisov, and E. N. Gromozova, Bull. Exp. Biol. Med. 159 (2), 269 (2015). https://doi.org/10.1007/s10517-015-2939-0

    Article  Google Scholar 

  21. M. Gudel, Living Rev. Solar Phys. 4, Article No. 3 (2007). https://doi.org/10.12942/lrsp-2007-3

    Article  ADS  Google Scholar 

  22. V. N. Obridko and Yu. A. Nagovitsyn, Solar Activity: Cylicity and Methods of Prediction (VVM, St. Petersburg, 2017) [in Russian].

    Google Scholar 

  23. V. V. Pipin, Monthly Not. Roy. Astron. Soc. 466 (3), 3007 (2017).

    Article  ADS  Google Scholar 

  24. M. V. Ragulskaya, Zemlya i Vselennaya, No. 3, 91 (2017).

  25. E. Gaucher, S. Govindarajan, and O. Ganesh, Nature 451 (7179), 704 (2008).

    Article  ADS  Google Scholar 

  26. C. Goldblatt and K. Zahnle, Nature 474, E1 (2011). https://doi.org/10.1038/nature09961

    Article  ADS  Google Scholar 

  27. V. Obridko, M. Ragulskaya, and E. Khramova, J. Atmos. Solar-Terr. Phys. 197 (2020).

  28. T. Abd-Deydan, S. V. Patsaeva, V. V. Fadeev, and V. I. Yuzhakov, Vestn. Mosk. Univ., Ser.: Fiz., Astron. 35 (2), 51 (1994).

    Google Scholar 

  29. T. S. Idrisov, M. A. Kurbanov, and U. A. Kulieva, Khim-. Bezopasn. 2 (2), 106 (2018).

    Google Scholar 

  30. E. Khramova, J. Atmos. Solar-Terr. Phys. 197 (2020).

  31. Yu. I. Gurfinkel, Ishemic Heart Disease and Solar Activity (Elf-3, Moscow, 2004) [in Russian].

  32. V. Cheptsov, E. Vorobyova, A. Belov, et al., Geosciences, No. 8, 298 (2018).

    Article  ADS  Google Scholar 

  33. M. Simakov, in Origins: Genesis, Evolution and Diversity of Life, Ed. by J. Seckbach (Kluwer, 2004), pp. 645–665.

    Google Scholar 

  34. A. M. Sadovski, A. B. Struminsky, and A. V. Belov, Astron. Lett. 44 (5), 324 (2018).

  35. F. Westall, F. Foucher, N. Bost, et al., Astrobiology 15, 998 (2015).

    Article  ADS  Google Scholar 

  36. V. V. Vishnevsky, M. V. Ragulskaya, and S. N. Samso-nov, Tekhnol. Zhivykh Sistem, No. 4, 61 (2007).

    Google Scholar 

  37. M. V. Ragulskaya and V. V. Pipin, Dinam. Slozhnykh Sistem 1 (1), 17 (2010).

    Google Scholar 

  38. Biotropic Effect of Space Weather (VVM, St. Petersburg, 2010) [in Russian].

  39. V. Obridko, M. Ragulskaya, E. Rudenchik, et al., Technol. Live Syst. 11 (3), 12 (2014).

    Google Scholar 

  40. S. M. Chibisov, G. S. Katinas, and M. V. Ragulskaya, Biorhythms and Cosmos: Monitoring Cosmobiospheric Connections (Moscow, 2013) [in Russian].

  41. M. V. Ragulskaya, V. N. Obridko, and E. G. Khramova, in Proc. 4th Ruussian Congress of Biophysicists (Sochi, 2019), pp. 367–368 [in Russian].

Download references

Funding

This work was supported by the Program 17 The Evolution of the Organic World and Planetary Processes of the Presidium of the Russian Academy of Sciences and the Russian Foundation for Basic Research (project no. 18-52-06002-Az_a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Ragulskaya, V. N. Obridko or E. G. Khramova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: SCR, solar cosmic ray; GCR, galactic cosmic ray; ECG, electrocardiogram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragulskaya, M.V., Obridko, V.N. & Khramova, E.G. Galactic Factors, the Young Sun, the Earth, and the Biophysics of Living Systems. BIOPHYSICS 65, 686–697 (2020). https://doi.org/10.1134/S000635092004017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635092004017X

Navigation