Skip to main content
Log in

The Effects of Ion Channel Inhibitors on the Generation of Electrical Impulses in Right Atrial Pacemaker Cells of 10-Day-Old Chicken Embryos

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The cellular mechanisms of pacemaker-cell activity and the contribution of various ion channels of the embryonic heart are not yet fully understood. This paper presents the results of an experiment to study the effects of specific ion-channel inhibitors on the generation of action potentials in pacemaker cells of the right atrium in chicken embryos. It has been found that the exclusion of calcium ions from the extracellular solution or the strip exposure to 10 μM nifedipine (an L-type Ca2+-channel blocker) did not inhibit the generation of action potentials but led to an increase in the frequency of electrical impulses by 45%. Ryanodine, an agonist of Ca2+-channels of the sarcoplasmic reticulum, also had a positive chronotropic effect. The application of lidocaine led to a negative chronotropic effect and inhibited generation of elecrical impulses. We concluded that the role of ryanodine-sensitive Ca2+-channels (RyR-channels) of the sarcoplasmic reticulum and L-type Ca2+-channels is not crucial for maintaining the pacemaker activity in the right atrial cells of 10-day-old chicken embryos with a four-chambered heart, a not fully formed sinoatrial node, and incomplete morphofunctional maturation of the central nervous system. The demonstrated inhibition of action potential generation by lidocaine and the absence of such an effect from nifedipine indicated the substantial contribution of the Na+ current to the pacemaker activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. P. Glynn, B. Onal, and T. J. Hund, PLoS One 9 (2), 1 (2014).

    Article  Google Scholar 

  2. M. R. Rosen, R. B. Robinson, P. Brink, et al., Anat. Rec. A. Discov. Mol. Cell Evol. Biol. 280 (2), 1046 (2004).

    Article  Google Scholar 

  3. T. Opthof, Med. Biol. Eng. Comput. 45 (2), 119 (2007).

    Article  Google Scholar 

  4. K. Y. Bogdanov, V. A. Maltsev, and T. M. Vinogradova, Circ. Res. 99 (9), 979 (2006)

    Article  Google Scholar 

  5. T. M. Vinogradova and E. G. Lakatta, J. Mol. Cell. Cardiol. 47 (4), 456 (2009).

    Article  Google Scholar 

  6. V. A. Maltsev and E. G. Lakatta, Am. J. Physiol. Heart Circ. Physiol. 296 (3), 594 (2009).

    Article  Google Scholar 

  7. A. D. Khokhlova, R. A. Syunyaev, A. M. Ryvkin, et al., Biophysics (Moscow) 61 (6), 893 (2016).

    Article  Google Scholar 

  8. A. E. Lyashkov, J. Behar, E. G. Lakatta, et al., Biophys. J. 114 (5), 1176 (2018)

    Article  ADS  Google Scholar 

  9. P. Sasse, J. Zhang, L. Cleemann, et al., J. Gen. Physiol. 130 (2), 133 (2007).

    Article  Google Scholar 

  10. F. J. Martinsen, Dev. Dyn. 233, 1217 (2005).

    Article  Google Scholar 

  11. V. A. Golovko, J. Evol. Biochem. Physiol. 42 (4), 417 (2006).

    Article  Google Scholar 

  12. D. DiFrancesco and D. Noble, Heart Rhythm 9 (2), 299 (2012).

    Article  Google Scholar 

  13. E. G. Lakatta and D. J. DiFrancesco, Mol. Cell. Cardiol. 47, 157 (2009).

    Article  Google Scholar 

  14. T. M. Vinogradova, Y. Y. Zhou, V. Maltsev, et al., Circ. Res. 94 (6), 802 (2004).

    Article  Google Scholar 

  15. E. G. Lakatta, V. A. Maltsev, and T. M. Vinogradova, Circ. Res. 106 (4), 659 (2010).

    Article  Google Scholar 

  16. M. F. Nilsson, A. C. Skold, A. C. Ericson, et al., Toxicol. Appl. Pharmacol. 272 (2), 306 (2013).

    Article  Google Scholar 

  17. S. M. Dutro, J. A. Airey, C. F. Beck, et al., Dev. Biol. 155 (2), 431 (1993).

    Article  Google Scholar 

  18. K. Ono, S. Shibata, and T. Iijima, J. Smooth Muscle Res. 39, 195 (2003).

    Article  Google Scholar 

  19. M. Baruscotti and D. DiFrancesco, Ann. N. Y. Acad. Sci. 1015, 111 (2004).

    Article  ADS  Google Scholar 

  20. A. O. Verkerk, R. Wilders, M. M. van Borren, et al., Eur. Heart J. 28, 2472 (2007).

    Article  Google Scholar 

  21. M. A. Gonotkov and V. A. Golovko, Bull. Exp. Biol. Med. 152 (2), 169 (2011).

    Article  Google Scholar 

  22. S. Severi, M. Fantini, L. A. Charawi, et al., J. Physiol. 590 (18), 4483 (2012).

    Article  Google Scholar 

  23. R. M. Brochu, J. R. Clay, and A. Shrier, J. Physiol. 454, 503 (1992).

    Article  Google Scholar 

  24. C. Okubo, H. I. Sano, Y. Naito, et al., J. Physiol. Sci. 63 (5), 355 (2013).

    Article  Google Scholar 

  25. E. A. Lebedeva, M. A. Gonotkov, and V. A. Golovko, Mezhd. Zh. Prikl. Fundament. Issled. 1, 120 (2019).

    Google Scholar 

  26. E. A. Lebedeva, Izv. Komi Nauch Tsentra Ural. Otd. Ross. Akad. Nauk 3 (15), 58 (2013).

    Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation of Basic Research for young researchers mol_a no. 18-34-00654, no. GR AAAA-A17-117012310152, and Academic Research Work no. GR AAAA-A17-117012310154-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Lebedeva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. The study protocol corresponded with the international Guide for the Care and Use of Laboratory Animals, 8th edition published by the National Academic Press (United States) in 2011.

Additional information

Translated by E. Sherstyuk

Abbreviations: RyR-channels, Ca2+ ryanodine-sensitive channels; AP, action potential; dV/dtmax, upstroke velocity; SDD, slow diastolic depolarization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, E.A., Golovko, V.A. The Effects of Ion Channel Inhibitors on the Generation of Electrical Impulses in Right Atrial Pacemaker Cells of 10-Day-Old Chicken Embryos. BIOPHYSICS 65, 619–624 (2020). https://doi.org/10.1134/S0006350920040077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920040077

Navigation