Skip to main content
Log in

The Change in the Linear Energy Transfer of a Clinical Proton Beam in the Presence of Gold Nanoparticles

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Gold nanoparticles are promising radiosensitizers for proton radiotherapy. However, the physical mechanisms of gold nanoparticles radiosensitization remain unclear. In the present study, the Geant4 toolkit was used to estimate by the Monte-Carlo simulation the changes (1) in the contribution of primary and secondary particles to the absorbed dose, (2) in the dose-averaged linear energy transfer, and (3) in the relative biological effectiveness of a 150 MeV proton beam caused by the addition of 50 mg/mL of gold nanoparticles to the irradiated water phantom. In the presence of gold nanoparticles no significant changes in the absorbed dose and the Bragg peak position were found, at the same time a redistribution of the contribution of secondary particles to the absorbed dose was recorded. An increase in the contributions from protons (~16%), recoil nuclei (~58%), α-particles (~400%), deuterons (~900%), tritons (~3000%), and photons (~7000%) was observed ~10 mm beyond the Bragg peak. The contribution of the secondary electrons decreased by ~35%. This redistribution led to ~5-fold increase in the dose-averaged linear energy transfer at the distal edge of the Bragg curve; this, in turn, may cause the ~1.4−2.2-fold increase in the relative biological effectiveness within this region. Thus, it is critically important to take into account the presence of gold nanoparticles when dosimetric planning proton radiotherapy in order to avoid unwanted damage to the normal tissues around the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. Schulz-Ertner and H. Tsujii, J. Clin. Oncol. 25, 953 (2007).

    Article  Google Scholar 

  2. T. Mitin and A. L. Zietman, J. Clin. Oncol. 32, 2855 (2014).

    Article  Google Scholar 

  3. D. I. Yurkov, S. V. Syromukov, V. V. Tatarskiy, et al., Acta Naturae 11, 99 (2019).

    Article  Google Scholar 

  4. B. S. Sorensen, J. Overgaard, and N. Bassler, Acta Oncol. 50, 757 (2011).

    Article  Google Scholar 

  5. W. D. Newhauser and R. Zhang, Phys. Med. Biol. 60, R155 (2015).

    Article  ADS  Google Scholar 

  6. R. Mohan and D. Grosshans. Adv. Drug Deliv. Rev. 109, 26 (2017).

    Article  Google Scholar 

  7. X. Tian, K. Liu, Y. Hou, et al., Mol. Clin. Oncol. 8, 15 (2018).

    Google Scholar 

  8. Particle Therapy Co-Operative Group, Particle Therapy Facilities in Clinical Operation. https://www.ptcog.ch/index.php/facilities-in-operation. Cited February 24, 2020.

  9. S. Lacombe, E. Porcel, and E. Scifoni, Cancer Nanotechnol. 8, 9 (2017).

    Article  Google Scholar 

  10. Y. Liu, P. Zhang, F. Li, et al., Theranostics 8, 1824 (2018).

    Article  Google Scholar 

  11. D. Peukert, I. Kempson, M. Douglass, and E. Bezak, Phys. Med. 47, 121 (2018).

    Article  Google Scholar 

  12. J. K. Kim, S. J. Seo, K. H. Kim, et al., Nanotechnology 21, 425102 (2010).

    Article  ADS  Google Scholar 

  13. J. C. Polf, L. F. Bronk, W. H. Driessen, et al., Appl. Phys. Lett. 98, 193702 (2011).

    Article  ADS  Google Scholar 

  14. J. K. Kim, S. J. Seo, H. T. Kim, et al., Phys. Med. Biol. 57, 8309 (2012).

    Article  Google Scholar 

  15. J. C. Jeynes, M. J. Merchant, A. Spindler, et al., Phys. Med. Biol. 59, 6431 (2014).

    Article  Google Scholar 

  16. S. Li, S. Penninckx, L. Karmani, et al., Nanotechnology 27, 455101 (2016).

    Article  ADS  Google Scholar 

  17. S. Li, S. Bouchy, S. Penninckx, et al., Nanomedicine 14, 317 (2019).

    Article  Google Scholar 

  18. C. Walzlein, E. Scifoni, M. Kramer, and M. Durante, Phys. Med. Biol. 59, 1441 (2014).

    Article  Google Scholar 

  19. S. McKinnon, S. Guatelli, S. Incerti, et al., Phys. Med. 32, 1584 (2016).

    Article  Google Scholar 

  20. R. Ahmad, G. Royle, A. Lourenco, et al., Phys. Med. Biol. 61, 4537 (2016).

    Article  Google Scholar 

  21. J. Cho, C. Gonzalez-Lepera, N. Manohar, et al., Phys. Med. Biol. 61, 2562 (2016).

    Article  Google Scholar 

  22. H. N. Tran, M. Karamitros, V. N. Ivanchenko, et al., Nucl. Instr. Meth. Phys. Res. B 373, 126 (2016).

    Article  ADS  Google Scholar 

  23. J. Gao and Y. Zheng, Int. J. Cancer Ther. Oncol. 2, 02025 (2014).

    Article  Google Scholar 

  24. A. C. Heuskin, B. Gallez, O. Feron, et al., Med. Phys. 44, 4299 (2017).

    Article  Google Scholar 

  25. A. V. Verkhovtsev, A. V. Korol, and A. V. Solov’yov, J. Phys. Chem. C 119, 11000 (2014).

    Article  Google Scholar 

  26. H. Jiang, B. Wang, X. G. Xu, et al., Phys. Med. Biol. 50, 4337 (2005).

    Article  Google Scholar 

  27. P. J. Taddei, D. Mirkovic, J. D. Fontenot, et al., Phys. Med. Biol. 54, 2259 (2009).

    Article  Google Scholar 

  28. J. Allison, K. Amako, J. Apostolakis, et al., Nucl. Instr. Meth. Phys. Res. A 835, 186 (2016).

    Article  ADS  Google Scholar 

  29. W. Ngwa, G. M. Makrigiorgos, and R. I. Berbeco, Phys. Med. Biol. 55, 6533 (2010).

    Article  Google Scholar 

  30. M. Hossain and M. Su, J. Phys. Chem. C 116, 23047 (2012).

    Article  Google Scholar 

  31. F. Guan, C. Peeler, L. Bronk, et al., Med. Phys. 42, 6234 (2015).

    Article  Google Scholar 

  32. A. V. Belousov, R. B. Bahtiosin, M. A. Kolyvanova, et al., Med. Radiol. Radiat. Safety 64, 5 (2019).

    Article  Google Scholar 

  33. G. Kraft, Prog. Part. Nucl. Phys. 45, S473 (2000).

    Article  ADS  Google Scholar 

  34. G. Dollinger, Nanotechnology 22, 248001 (2011).

    Article  ADS  Google Scholar 

  35. C. Le Sech, K. Kobayashi, N. Usami, et al., Nanotechnology 23, 078001 (2012).

    Article  ADS  Google Scholar 

  36. E. Alizadeh, T. M. Orlando, and L. Sanche, Annu. Rev. Phys. Chem. 66, 379 (2014).

    Article  ADS  Google Scholar 

  37. S. Brousmiche, K. Souris, J. O. de Xivry, et al., Phys. Med. Biol. 62, 8226 (2017).

    Article  Google Scholar 

  38. M. Goitein and G. T. Chen, Med. Phys. 10, 831 (1983).

    Article  Google Scholar 

  39. F. Tommasino, M. Rovituso, E. Bortoli, et al., Physica Medica 58, 99 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Center for Collective Use of Ultra-High Performance Computing Resources of Moscow State University.

Funding

This study was supported by the Nuclear Medicine Development Program of JSC Science and Innovations of the Rosatom State Corporation (project no. AAAA-A19-119122590084-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Morozov.

Ethics declarations

The authors declare no conflicts of interest. This work does not contain description of any studies using humans and animals as objects.

Additional information

Translated by M. Batrukova

Abbreviations: LET, linear energy transfer; GNP, gold nanoparticles; RBE, relative biological effectiveness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousov, A.V., Morozov, V.N., Krusanov, G.A. et al. The Change in the Linear Energy Transfer of a Clinical Proton Beam in the Presence of Gold Nanoparticles. BIOPHYSICS 65, 541–547 (2020). https://doi.org/10.1134/S0006350920040053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920040053

Keywords:

Navigation