Skip to main content
Log in

A Molecular Dynamics Simulation of Polyampholytic Polypeptides Associated with Atomic Clusters on the Surfaces of Metal-Like Nanoobjects

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Electrically induced conformational changes of polyampholytic polypeptides associated with model metal atomic clusters on the surfaces of metal-like nanoparticle and substrate with uniform distribution of electric charge, as well as on the surface of a polarized nanoparticle, were studied using molecular dynamics simulations. The average distances between the atomic clusters bound to the polypeptide and the adsorbent under a change in the charge density on its surface were calculated. Electrically induced changes in the polyampholyte conformations led to a significant shift of the atomic clusters associated with the macrochain relative to the adsorbing surface of the nanoobject, which can be used in sensors based on the effects of surface plasmon resonance and surface-enhanced Raman scattering, as well as in nanoprobes with adjustable parameters or parameters switched under the influence of an electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Lee, K. Chung, J. Lee, et al., Adv. Funct. Mater. 25, 6716 (2015).

    Article  Google Scholar 

  2. A. R. Ferhan and D. Kim, Nano Today 11, 415 (2016).

    Article  Google Scholar 

  3. H. Chen, Y. Wang, X. Li, et al., RSC Adv. 8, 22177 (2018).

    Article  Google Scholar 

  4. H. Chen, T. You, G. Xu, et al., Sci. China Mater. 61 (9), 1201 (2018).

    Article  Google Scholar 

  5. A. Zengin, U. Tamer, and T. Caykara, J. Colloid Interface Sci. 448, 215 (2015).

    Article  ADS  Google Scholar 

  6. D. Li, Y. Ma, H. Duan, et al., Biosens. Bioelectron. 99, 389 (2018).

    Article  Google Scholar 

  7. X. Zhu, J. Li, H. He, et al., Biosens. Bioelectron. 74, 113 (2015).

    Article  Google Scholar 

  8. E. Chang, J. S. Miller, J. Sun, et al., Biochem. Biophys. Res. Commun. 334 (4), 1317 (2005).

    Article  Google Scholar 

  9. S. Hamd-Ghadareh, A. Salimi, F. Fathi, S. Bahrami, Biosens. Bioelectron. 96, 308 (2017).

    Article  Google Scholar 

  10. Y. Chen, E. R. Cruz-Chu, J. C. Woodard, et al., ACS Nano 6 (10), 8847 (2012).

    Article  Google Scholar 

  11. E. Cantini, X. Wang, P. Koelsch, et al., Acc. Chem. Res. 49 (6), 1223 (2016).

    Article  Google Scholar 

  12. M. G. Kucherenko, A. P. Rusinov, T. M. Chmereva, et al., Optics Spectrosc. 107, 480 (2009).

    Article  ADS  Google Scholar 

  13. M. G. Kucherenko, S. V. Izmodenova, N. Yu. Kruchinin, and T. M. Chmereva, High Energy Chem. 43 (7), 592 (2009).

    Article  Google Scholar 

  14. M. G. Kucherenko, V. N. Stepanov, and N. Yu. Kruchinin, Optics Spectrosc. 118 (1), 103 (2015).

    Article  ADS  Google Scholar 

  15. N. Yu. Kruchinin and M. G. Kucherenko, Colloid J. 81 (2), 110 (2019).

    Article  Google Scholar 

  16. J. P. K. Doye and D. J. Wales, New J. Chem. 22, 733 (1998).

    Article  Google Scholar 

  17. J. C. Phillips, R. Braun, W. Wang, et al., J. Comput. Chem. 26 (16), 1781 (2005).

    Article  Google Scholar 

  18. A. D. MacKerell, Jr., D. Bashford, M. Bellott, et al., J. Phys. Chem. B 102 (18), 3586 (1998).

    Article  Google Scholar 

  19. H. Heinz, R. A. Vaia, B. L. Farmer, and R. R. Naik, J. Phys. Chem. C 112 (44), 17281 (2008).

    Article  Google Scholar 

  20. A. R. Bizzarri, G. Costantini, and S. Cannistraro, Biophys. Chem. 106 (2), 111 (2003).

    Article  Google Scholar 

  21. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Article  ADS  Google Scholar 

  22. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983).

    Article  ADS  Google Scholar 

  23. M. Shankla and A. Aksimentiev, Nat. Commun. 5, 5171 (2014).

    Article  ADS  Google Scholar 

  24. A. Yu. Grosberg and A. P. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research and Orenburg oblast (project no. 19-43-560003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Kruchinin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any studies involving humans as subjects of research.

Additional information

Translated by D. Novikova

Abbreviations: MD, molecular dynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruchinin, N.Y., Kucherenko, M.G. A Molecular Dynamics Simulation of Polyampholytic Polypeptides Associated with Atomic Clusters on the Surfaces of Metal-Like Nanoobjects. BIOPHYSICS 65, 186–194 (2020). https://doi.org/10.1134/S0006350920020104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920020104

Navigation