Skip to main content

The Influence of the Spectral Properties of the Lighting Environment on Light Absorption by Lettuce Leaves and the Net Productivity of Lettuce

Abstract—The efficiency of light absorption with different spectral compositions by lettuce leaves and the choice of optimal conditions of the lighting environment for increasing the productivity and quality of plant products grown under artificial lighting conditions were investigated. Lettuce of the Typhoon variety was grown by a thin-layer panoponic method in an automated growth chamber with five variants of different light sources. A non-damaging method developed by the authors for the measurements of the absorption spectra of leaves in vivo made it possible to determine the influence of the spectral composition of the radiation on the optical characteristics that reflect the physiological state of the plants. The amount of absorbed photon energy increased by ~140 μmol   m–2 s–1 with an increment in lettuce leaf biomass by 1 g for 10 days under maximum productivity conditions; the values of the light absorption index below 70 μmol  m–2 s–1 corresponded to the samples with minimum results in growth characteristics. The similarity of the spectral characteristics of lighting in the region of photosynthetically active radiation of HPS lamps (High-Pressure Sodium lamps) and LED lamps, which emit yellow light, and almost the same proportion of photosynthetically active photons in the blue, green, and red regions of the spectrum led to the same increment of light absorption in the process of plant development. However, a significant difference in the productivity of lettuce (~50%), as well as the growth, development, and biochemical composition indicated a better effect of the HPS lamps on the properties of the plant culture. The obtained data indicated that the illumination with an intensity of ~25 μmol m–2 s–1 in the range of 400–500 nm, ~150 μmol m–2 s–1 in the range of 500–600 nm, and ~150 μmol m–2 s–1 in the range of 600–700 nm led to high productivity of the lettuce.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. S. Kurihara, T. Ishida, M. Suzuki, and A. Maruyama, Focus. Modern Food Industry 3, 1 (2014).

    Article  Google Scholar 

  2. O. Hitoshi, H. Tatsuya, K. Kouji, and N. Yoshifumi, Environ. Control Biol. 53 (2), 93 (2015).

    Article  Google Scholar 

  3. J. E. Park and K. Nakamura, Environ. Control Biol. 53 (2), 89 (2015).

    Article  Google Scholar 

  4. N. Yeh and J. P. Chung, Renew. Sust. Energ. Rev. 13 (8), 2175 (2009).

    Article  Google Scholar 

  5. Y. Qi-chang, J. Agricultural Sci. Technol. 6, 42 (2008).

    Google Scholar 

  6. S. A. Rakut’ko and A. E. Patsukov, Svitrotekh. Elektroenerg. 2, 18 (2013).

    Google Scholar 

  7. A. V. Aladov, E. D. Vasilieva, A. L Zakgeim, et al., Svetotekhnika 3, 8 (2010).

    Google Scholar 

  8. G. Tamulaitis, P. Duchovskis, Z. Bliznikas, et al., in Abstr. Book of 4th Int. Conf. on Solid State Lighting (Int. Soc. for Optics and Photonics, 2004), pp. 165–173.

  9. D. T. Nhut, T. Takamura, H. Watanabe, et al., Plant Cell, Tissue Organ Cult. 73, 43 (2003).

    Article  Google Scholar 

  10. O. V. Avercheva, Yu. A. Berkovich, A. N. Erokhin, et al., Fiziol. Rast. 56, 17 (2002).

    Google Scholar 

  11. W. G. Anderson Jr., W. Grant, and L. S. Capen, U.S. Patent No. 6921182 (2005).

  12. A. A. Shakhov, V. S. Khazanov, and S. A. Stanko, Bot. Zh. 46 (2), 222 (1961).

    Google Scholar 

  13. A. B. Brandt and S. V. Tageeva, Optical Parameters of Plant Organisms (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  14. I. S. Lisker, in Physical Methods and Means for Information Acquisition in Agromonitoring (AFI, Leninrad, 1987), pp. 3—21 [in Russian].

  15. M. V. Arkhipov, V. N. Savin, E. V. Kanash, et al., in Plant Bophysics and Phytomonitoring (AFI, Leningrad, 1990), pp. 186—208 [in Russian].

    Google Scholar 

  16. V. S. Lysenko, T. V. Varduni, V. G. Soyer, and V. P. Krasnov, Fundament. Issled. 1 (4), 112 (2013).

    Google Scholar 

  17. G. H. Krause and E. Weis, Annu. Rev. Plant Biol. 42 (1), 313 (1991).

    Article  Google Scholar 

  18. M. Mottus, A. Hovi, and M. Rautiainen, Appl. Optics 56 (3), 563 (2017).

    ADS  Article  Google Scholar 

  19. E. M. Basarygina, O. G. Litsinger, and T. A. Putilova, APK Rossii 24 (5), 1141 (2017).

    Google Scholar 

  20. A. Hovi, P. Raitio, and M. Rautiainen, Silva Fenn. 51, 1 (2017).

    Article  Google Scholar 

  21. Yu. I. Zheltov and G. G. Panova, RF Patent No. 108705 (2011).

  22. G. G. Panova, I. N. Chernousov, O. R. Udalova, et al., Dokl. Ross. Akad. S-kh. Nauk 4, 17 (2015).

    Google Scholar 

  23. V. A. Chesnokov, E. N. Bazyrina, and T. M. Bushueva, Plant Cultivation without Soil (Leningrad State Univ., Leningrad, 1960) [in Russian].

    Google Scholar 

  24. T. E. Kuleshova, M. N. Blashenkov, D. O. Kuleshov, and N. R. Gall’, Nauch. Priborostroenie 26 (3), 35 (2016).

    Article  Google Scholar 

  25. T. E. Kuleshova, I. S. Seredin, S. A. Cheglov, et al., J. Phys.: Conf. Ser. 1135, 012013 (2018).

    Google Scholar 

  26. J. W. Pickering, S. A. Prahl, N. Van Wieringen, et al., Appl. Optics 32 (4), 399 (1993).

    ADS  Article  Google Scholar 

  27. V. A. Tutel’yan and E. N. Belyaev, Sanitary Regulations and Standards 2.3.2.1078-01 (2001) [in Russian].

  28. A. I. Ermakov, V. V. Arasimovich, and N. P. Yarosh, Methods of Biochemical Analysis of Plants (Agropromizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  29. I. M. Skurikhin and V. A. Tutel’yan, Manual of Methods for Analyzing the Quality and Safety of Food Products (Brandes-Meditsina, Moscow, 1998) [in Rusian].

    Google Scholar 

  30. E. V. Vyazov and N. V. Shalygo, Dokl. Nats. Akad. Nauk Belarusi 59 (2), 87 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Kuleshova.

Ethics declarations

The authors declare no conflict of interest. This paper does not describe any research using humans and animals as objects.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuleshova, T.E., Chernousov, I.N., Udalova, O.R. et al. The Influence of the Spectral Properties of the Lighting Environment on Light Absorption by Lettuce Leaves and the Net Productivity of Lettuce. BIOPHYSICS 65, 95–105 (2020). https://doi.org/10.1134/S0006350920010121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920010121

  • Keywords: intensive photoculture
  • lighting spectra
  • LED
  • leaf optical properties
  • light absorption
  • net productivity